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ABSTRACT

The Random Walk (weak form efficient market) hypothesis is of vital importance in
economics and finance to explain the behaviour of asset prices. Several authors have
examined the validity and conditions under which the hypothesis holds. Most of the
techniques and models used, rely on runs and serial correlation tests, however test using
Markov chains are rare. Most Markov chains applications perform an stratification of
returns defining the structure of the state space. The aim of this research is to detect
the presence of random walk in stock market returns using Markov chains. The chain
states are defined as the run lengths the process can develop. The concept of cycles
is also introduced modelling the process in a more concretely. Conclusions are drawn
analysing stationarity of the steady state probability distributions under diverse
scenarios. The Mexican stock market daily closing prices index is analysed, covering a
16-year period, finding that the random walk is not present. This result is corroborated
applying conventional random walk hypothesis tests.
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RESUMEN

La hipétesis de caminata aleatoria (forma débil de mercado eficiente) es de vital im-
portancia en economia y finanzas para explicar el comportamiento de precios bursa-
tiles. Una gran cantidad de articulos han examinado la validez y condiciones bajo las
cuales se cumple la hipoétesis. La gran mayoria de las técnicas y modelos que se han
aplicado para confirmar la hipétesis se han basado en pruebas de corridas y de co-
rrelacion serial, siendo raro encontrar la aplicaciéon de Cadenas de Markov. En la ma-
yoria de las aplicaciones de Cadenas de Markov se ha realizado la estratificaciéon del
rendimiento para estructurar el espacio de estados de la cadena. El objetivo de esta
investigacion, es el detectar la existencia de caminata aleatoria en los rendimientos
bursatiles, mediante la aplicacién de cadenas de Markov. Se definen los estados de
la cadena como la longitud de la corrida que el proceso pueda generar. Se introduce
ademas el concepto de ciclos, con el propdsito de modelar el proceso de forma mas
concreta. Se obtienen conclusiones, analizando la estacionariedad en las distribu-
ciones de probabilidad en condiciones de estado estable, observadas en escenarios
diversos. Como ejemplo de aplicacion de esta técnica de analisis se toma el caso del
Indice de Precios y Cotizaciones (IPC) del mercado de valores mexicano, considerado
un periodo de estudio de 16 afios. Se concluye la ausencia de caminata aleatoria, y se
corrobora este resultado con la aplicacion de pruebas de hipétesis convencionales.

Clasificaciéon JEL: C02, C65, G14

Palabras clave: rendimientos bursatiles, caminata aleatoria, cadenas de Markov,
corridas, ciclos, estado estable.

Introduction

he random walk is known in stochastic processes theory to have the

memoryless property or Markov property. The Markov property is fun-
damental in time series analysis and its validity has important implications
in economics and finance.

McQueen and Thorley (1991) test the random walk hypothesis based
on the statistical theory of finite state Markov processes or Markov chains.
They perform a Bernoulli discretization (high, low) of a series of annual stock
returns taking the average return of the prior 20 years as a reference base.
Annual real and excess returns are shown to exhibit significant non-random
walk tendencies in the sense that low (high) returns tend to follow runs of
high (low) returns.in the post-war period.
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The simple time-homogeneous Markov model is one the most popular
models specifying the stochastic process by transition probabilities (Jarrow
etal. 1997). Chen and Hong (2012) have developed a new test for the Markov
property using the conditional characteristic function embedded in a fre-
quency domain approach, which tests the implication of the Markov prop-
erty on conditional moments. Chen and Hong give an excellent literature
review about models rooted in Markov processes applied to stock market
analysis.

Following this line of inquiry, this paper tests the Markov property us-
ing long length as stochastic variable, it also introduces the idea of working
with cycles, where a cycle is formed by the sequence of two runs of differ-
ent signs. Cycles offer a simple indicator that is relatively easy to study. The
transition probability matrices of runs and cycles are analysed separately,
drawing conclusions from their steady-state probability distributions. This
method is used to analyse the Mexican stock market prices index (IPC) cov-
ering the time period from February 2002 to January 2018, divided into two
parts of equal length, obtaining three sample periods overall, period 1, peri-
od 2 and a combined period. All results indicate that the Markov property is
not present, these results are corroborated with those obtained using con-
ventional random walk hypothesis tests.

The paper is organized as follows. Section 1 presents important defi-
nitions. Section 2 introduces and performs an exploratory data analysis of
the Mexican stock price dataset. Markov chain modelling is undertaken in
Section 3. In section 4 random walk tests are used to corroborate results.
Followed by conclusions.

1. Definitions
1.1. Return, run and cycle

The main concern of this research is to test the hypothesis that successive
stock market price changes are independent, by applying the Markov chains
technique, focusing on the analysis of runs. A run is a sequence of price
changes of the same sign (Fama, (1965)). These price changes and their
signs are automatically obtained by the calculation of returns. The standard
definition of the continuously compounded return or log return is used:

Py

e = lnPt—l = Pt~ Pt-1 (1)
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where P, is the asset price at time t and p, = In(Py).

To explain these definitions a simple example is considered. Let the se-
quence of returns (i.e. changes) be: 1.48, 2.08, -0.04, 0.79, -1.13, -0.45, -0.83,
0.25, 0.58 (Note: it is a common practice for returns to be referred to in
terms of percentages, but we omit writing % here). Considering only the
signs of the variable, the following sequence is observed: +, +, -. +. -, -. -, +, +.
Defining a positive run as a sequence of positive returns, a negative run as a
sequence of negative returns and run length as the number of observations
in a run. In this example there are three positive runs with lengths 2, 1, 2,
and two negative runs with lengths 1, 3.

A cycle is a sequence of two runs of different signs, this is a negative run
followed by a positive run in sequence. For the example, if we start with a
negative run there are cycles with lengths 2, 5. Conversely, if a positive run
is considered first there are two cycles with lengths 3, 4. In this paper, the
cycles are recorded starting with negative runs, and it is necessary that the
initial and final run are well defined. Therefore, in the example there would
only be one cycle, since although the second negative run is well defined the
following positive run is not, as the next observation could be a positive re-
turn or negative return.

1.2. Markov Chains

A stochastic process X={Xn:n>0} on a countable set S is a time-
homogeneous Markov Chain if, for any i,j € Sand n >0,

1:)(Xn+1 = leO' . -:Xn) = l:)(Xn+1 = len) (2)

P(Xne1 =Jj1Xn = 1) = pyj (3)

the pij is called the one step transition probability from state i to state j,
these transition probabilities satisfy Y es p;; = 1,1 € S, while P = [p;;] is
called the (one step) transition probability matrix of the chain.

Condition (2), called the Markov property, says that, at any time n, the
next state X,,,; is conditionally independent of the past X,,....,.X,.; given the
present state X,,. In other words, the next state is dependent on the past and
present only through the present state.
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Condition (3) simply says that the transition probabilities do not de-
pend on the time parameter n; the Markov chain is therefore “time-homoge-
neous”. If the transition probabilities were functions of time, the process X,
would be a time-inhomogeneous Markov chain. (Serforzo, 2009).

A time-homogeneous Markov chain is entirely defined by the transi-
tion probability matrix and the initial distribution P(Xo = Xo0) of the Markov
chain.

A Markov chain (Xk kK € S) is stationary if and only if it is time homoge-
neous, so that X, has the same probability distribution forall n € T.

2. Exploratory data analysis

The Mexican stock market index IPC is used to illustrate the application of
this technique. The data correspond to the daily closing price observations
covering a 16-year period (February 2002 to January 2018) and were
obtained from es-us.finanzas.yahoo.com web-site. The dataset is partitioned
into two periods, each 8 yearslong: February 2002 to January 2010, February
2010 to January 2018. These time intervals will be referred to as 15 period,
2"dperiod and the whole dataset as the whole period. The analysis of the two
subsamples and the whole sample are performed separately. The objective is
to detect if the Markovian property is held on runs and on cycles. Table 1 shows
the number of observations of the IPC index in the three periods considered.

Figure 1 charts the IPC index and returns over period 1, where it grew
exponentially until the first week of June 2007, fluctuating around a 30,000
points average for 6 months, and falling dramatically during a short peri-
od (until December 27th 2008) losing 48% of its peak value, a recovery fol-
lowed, going just beyond its previous peak during the last eight months. The

Table 1. Number of observations in IPC index

Sample Data Returns Returns Returns
) (+) total
1%t period 2011 902 1108 2010
2" period 1999 951 1047 1998
Whole period 4010 1853 2156 4009

Source: Prepared by author
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Figure 1. IPC and returns (%): Feb/2002 - Jan/2010
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greatest positive return was 10.44% and occurred on December 13th 2008,
the greatest negative return was -7.27% and happened on December 22nd
2008.

Figure 2 plots the IPC index and returns over period 2. It shows that
movements during period 2 are much more moderate than in period 1, the
largest positive return of 4.17% occurred on August 11th 2011 and the larg-
est negative return was -5.98% on August 8th 2011.

Table 2 records the frequencies of positive and negative run lengths for
each of the two 8-year periods, and for the combined 16-year period. It can
be observed that there are significantly more negative runs of length one
than positive runs of length one. It is also observed that negative runs of
length lower than 4 occur more frequently than positive runs of the same
length, excepting a run of length 3 for the first period. Furthermore, it is ev-
ident that positive runs of length longer than 3 present substantially higher
occurrence than negative runs of the same length. As expected, the total
number of runs is the same for negative runs and for positive runs.

Table 3 records the frequencies of cycle lengths for each of the 8-year
periods and for the whole 16-year period. It is observed that in the second
period substantially more cycles with length lower than 4 were generated
compared to those for the first period, representing 50 per cent of the total
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Figure 2. IPC and returns (%): February 2010 - January 2018
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Table 2. Frequency of run length

Length
Run 1 2 3 4 5 6 7 8 9 10  Total
1stperiod | Negative 234 115 36 22 18 8 4 0 1 - 458
Positive 188 115 60 37 24 18 6 5 2 3 458
2" period | Negative 253 119 71 28 13 6 3 0 0 1 494
Positive 235 117 62 42 22 8 6 1 1 - 494

Whole. Negative 489 234 127 50 31 14 7 0 1 1 954
Period Positive 424 233 122 79 46 26 12 6 3 3 954

Source: Prepared by author

number of cycles of the second period. Table 3, also reveals that cycles of
length 2 and 3 are the most frequent over the study period, with about 47
per cent of occurrence among the total number of cycles
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Table 3. Frequency of cycle length

Length
Sample 2 3 4| 5| 6 7 8 9 |10 | 11 | 12 | 13 | Total
1st period 93 105 87 | 60 |41 26 19 13 6 4 3 1 458
2nd period 125 122 88 | 59 | 36 30 19 6 7 1 1 - 494
Whole period | 219 | 228 |175 [119 | 77 | 56 38 | 19 |13 5 4| 1 954

Source: Prepared by author

3. Markov chains modelling

The aim of modelling a stock market index as a Markov chain is to find out if
the market may be viewed as holding the Markov property, i.e., the future is
conditionally independent of the past given the present state of the process,
and that the probability distribution is time homogeneous.

3.1. Runs

Investigation of the time series of returns focuses on the stochastic variable
run length, in contrast to other Markov chains applications where the state
space of the chain is defined by stratification of the return’s level see Chen
and Hong, (2012).

Let X, be the length of the run, the time parameter index n indicates
when the chain changes sign. The state space is finite S = {1, 2, ....,m} repre-
senting all possible run lengths, with transition probabilities matrix P = [p,],
where p;; is the probability, that for a run of length i, the next run of the same
sign be of length j. The estimate of the p;; values are simply the transition
frequencies from state i to state j divided by the total number of transitions
departing from i. Tables 4 to 9 illustrate the transition frequency matrices
for these three sample periods.
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Table 4. Negative runs transition frequency matrix, first sample period

Next run length
1 2 3 4 5 6 7 9
1 118 67 25 9 8 5 1 1
2 57 30 16 4 6 1 1
Previous | 3 32 10 6 3 3 0 2
run 4 12 3 3 2 1 1 -
length 5 9 3 3 3 - - -
6 4 1 2 1 - - -
7 2 1 1 - - - -
9 1 - - - - - -

Source: Prepared by author

Table 5. Positive runs transition frequency matrix, first sample period

Next run length
1 2 3 4 5 6 7 8 9 10
1|74 41 28 14 11 13 2 2 1 2
Previous | 2 | 46 33 14 13 5 2 1 0 1 -
run 3|12 15 7 4 3 1 2 1 0 1
length 4 | 18 8 4 2 2 1 0 2 - -
5 | 11 8 2 1 2 - - - - -
6 7 4 4 2 1 - - - - -
7 3 1 0 0 0 1 1 - - -
8 3 1 0o 1 - - - - - -
9 1 1 - - - - - - -
10 0 3 - - - - . - - -

Source: Prepared by author
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Table 6. Negative runs transition frequency matrix, second sample period

Next run length

1 2 3 4 5 6 7 10

11129 60 40 14 4 4 1 1

2 57 30 19 6 5 1 1 -

Previous | 3 39 18 5 5 2 1 1 -
run 4 15 5 4 2 2 - -
length 5 7 4 2 - - - - -
6 3 1 1 1 - - - -

7 2 1 - - - - - -

10 1 - - - - - -

Table 6 reveals that states 8 and 9 do not occur.

Source: Prepared by author

Table 7. Positive runs transition frequency matrix, second sample period

Next run length

1 2 3 4 5 6 7 8 9

1 107 59 30 17 14 5 1 1 1

Previous 2 62 23 16 9 4 2 1 - -
run 3 30 12 8 9 1 1 1 - -
length 4 21 12 3 4 2 - -
5 8 7 1 3 1 0 2 - -

6 5 2 0 O 1 - - - -

7 1 1 3 0 0 O 1 - -

8 0 1 - - - - - -

9 1 - - - - - - -

192

Source: Prepared by author
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Table 8. Negative runs transition frequency matrix, whole sample period

Next run length
1 2 3 4 5 6 7 9 10
1 | 249 127 65 23 12 9 2 1 1
2 | 114 60 35 10 1 2 2 - -
Previous ™3 1771 28 1 8 5 1 3 - -
il 4| 27 8 7 4 3 1 - - -
ength s 6 7 05 3 - - - . -
6| 7 2 3 2 - - - I
7 4 2 1 - o -
o 1 - - - - -
0] 1 - - - -

Source: Prepared by author

Table 9. Positive runs transition frequency matrix, whole sample period

Next run length

1 2 3 4 5 6 7 8 9 10

1 181 101 58 31 25 18 3 3 2 2

Previous | 2 108 56 31 22 9 4 2 o 1 -
- 3 56 27 15 13 4 2 3 1 0 1
4 39 20 7 6 4 1 0 2 - -

ength - T "9 15 3 4 3 0 2 - - -
6 12 6 4 2 2 - - - - -

7 4 2 3 0 0 1 2 - - -

8 3 2 0 1 - - - - - -

9 2 1 - - - - - - - -

10 0 3 - - - - - - - -

Source: Prepared by author

It is assumed that all these chains are aperiodic and irreducible, so that
the steady state probability vector m must satisfy
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T=mP (4)

the 7 solution is given by any row of the matrix: rlll_f)glo p"

Figures 3 and 4 illustrate the graphs of the steady state probability dis-
tributions for positive and negative run lengths for the three sample cases.

Figure 3. Negative run length steady state probabilities
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Figure 4. Positive run length steady state probabilities

0.5

. .
0.45 a —— First subsample

04 X --@ - Second Subsample

0.35 ‘ & Whole sample
0.3
0.25
0.2
0.15
0.1

0.05

* Run length 6

Source: Prepared by author

194 Volumen 8, numero 2, julio - diciembre, 2018 pp. 183-204



Detecting random walk in stock market prices based on Markov...

IBstocdsticas
FINANZAS Y RIES@0

A summary of statistical measures of these steady-state distribution is
shown on Table 10.

Table 10. Steady state statistical measures of run length for the sample period

1st period 2nd period Whole period
Negative Positive | Negative Positive | Negative Positive
Mean 1.9430 2.4064 1.9190 2.1103 1.9286 2.2526
Variance 1.7485 3.1533 1.5886. 2.0848 1.6640 2.6139

Source: Prepared by author

Taking into account that the first and second periods are partition el-
ements of the whole period with same length, an evaluation is carried out
about the variation of the second central moment, so that, dividing the neg-
ative run length variance of the second period by the negative run length
variance of the first period results in a decrement of about 9.14%. A similar
evaluation for the positive run length variance results a decrement of about
34%. These results strongly indicate that the steady-state run length distri-
bution does not remain stationary, concluding that the Markovian property
is not held on runs.

3.2. Cycles

Let X, be the length of a cycle, as stated before, a cycle is formed by a positive
and negative runs (or vice-versa) in sequence. Here the time parameter index
n indicates when the cycle is concluded. The state space is finite S = {2,...,m}
representing all possible cycle lengths. Asitis evident, length 1 never occurs.
The transition probabilities matrix P = [p;], where p;; is the probability that
a cycle of length i be followed by a cycle length j. The estimate of p;; is given
by the relative frequency of the transitions from state i to state j. Tables 11
to 14 show these transition frequencies.
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Table 11. Cycles transition frequency matrix, first sample period
Next cycle length

2 3 4 5 6 7 8 9 11 12 13
2 14 22 20 15 7 4 7 1 0 2 0 1
3 16 19 17 14 16 9 2 7 4 0 1 -
4 166 26 20 9 6 2 6 1 0 1 - -
5 21 12 10 7 4 3 1 0 1 1 - -
6 6 10 8 o5 4 5) 0 1 1 0 1 -

Previous 7 8 5 4 2 3 2 2 ; , - -
cycle 8 4 6 3 3 O 0 0 2 0 0 (R
length 9 4 1 4 3 0 0 1 - - - - -
10 2 0 0 2 1 1 - - - - - -
11 2 1 1 - - - - - - - - -
12 1 2 - - - - - - - - - -
13 0 1 - - - - - - - - - -

Source: Prepared by author

Table 12. Cycles transition frequency matrix, second sample period

Next cycle length
2 3 4 5 6 7 8 9 10 11 12
2 29 31 20 15 9 10 5 2 1 -
3 37 33 18 15 6 8 3 0 2 - -
4 18 19 22 11 5 6 5 1 - - -
5 16 13 10 5 9 3 3 - - - -
6 7 10 2 7 4 1 2 2 1 - -
Previous | 7 10 7 5 4 2 2 - - - , }
cycle 8 6 7 3 0 1 0 1 0 1 - -
length 9 1 0 3 0 1 0 0 1 - - -
10 0 2 3 2 - - - - - - -
11 0 0 1 - - - - - - - -
12 1 - - - - - - - - - -

Source: Prepared by author
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Table 13. Cycles transition frequency matrix, whole sample period

Next cycle length
2 3 4 5 6 7 8 9 10 11 12 13
2 | 43 | 54 40 30 16 14 12 3 3 3 0 1
3 53 |52 36 29 22 17 5 7 6 0 1 -
4 34 (45 42 20 11 8 11 2 0 1 1 -
5 37 |25 20 12 13 6 4 0 1 1 - -
Previous | 6 13 | 20 10 12 8 6 2 3 2 0 1 -
cycle 7 18 | 12 9 6 5 4 2 - - -
length 8 10 | 13 6 3 1 0 1 2 1 0 1 -
9 5 1 7 3 1 0 1 1 - - - -
10 2 2 3 4 1 1 - - - - - -
11 2 1 2 - - - - - - - - -
12 2 2 - - - - - - - - - -
13 0 1 - - - - - - - - - -
Source: Prepared by author
Figure 5. Cycle length steady state probabilities
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Figure 5 provides a better insight about the behaviour of the cycle length
probability distribution at the steady state for the three analysed samples.

A summary of statistical measures for these steady-state distribution is
shown in Table 14.

Table 14. Steady state: Statistical measures of cycle length for the sample periods

1%, Period 2"d period | Whole period
Mean 4.3510 4.0291 4.1818
Variance 4.7469 3.8845 4.3157

Source: Prepared by author

As can be seen on table 14, neither the mean or the variance changed.
Therefore, we conclude that the Markovian property does not hold on cycles.

In order to highlight that the cycle length distributions do not preserve
time-homogeneity, the two elements of the periods analysed are taken un-
der consideration, since they are the ones suitable for comparison because
they have the same length. It is enough to observe the change in variance is
about 18% from the first period to the second period, providing strong ev-
idence that the Markov property is not present, consequently, the random
walk assumption does not hold.

4. Application of conventional random walk tests

In order to corroborate the previous results the application of runs test and
correlation tests will provide evidence about whether or not the random
walk hypothesis is fulfilled.

The efficient market hypothesis (EMH) in its weak-form, postulates that
successive one-period stock returns are independently and identically dis-
tributed (IID), i.e., they resemble a “random walk” (Fama, 1970). Fama (1965)
analysed runs for several stocks finding little evidence for violations of ef-
ficiency based on serial dependence in returns. Samuelson (1965) and Man-
delbrot (1966) rigorously studied the theory of random walks. The EMH has
been analysed in many ways, the literature presents a great variety of mod-
els to test the hypothesis that markets fluctuations follow a random walk.
Examples include: the variance ratio test, the runs test, the serial correla-
tion test and other more general models (for applications of these tests, see
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for instance Al-Loughani and Chappell, 1997: Chang and Ting, 2000; Sensoy,

2012, Mishra et al,, 2012; Risso, 2014, Dsouza and Millikarjunappa, 2015).
Three random conventional tests are applied to the time series under

study: difference sign, individual autocorrelation and joint autocorrelation.

4.1. The difference sign test

Kendall (1976) proposed a method to detect randomness by counting the
number of positive first differences of the series, which are reflected by
returns (see equation 1). Let X represent the number of positive returns of a
series having n-1 returns. For a random series the distribution of X tends to
be Normal ((n-1)/2, (n+1)/12), see Table 15.

Table 15. The difference sign test result on positive returns,
Ho: Normality holds

Sample period | Positive Expected | Std-dev. Confidence Decision
Interval (95%o)

1%, period 1108 1004.5 12.95 [979,1029] Reject Ho

2", Period 1047 998.5 12.91 [973,1024] Reject Ho

Whole period 2156 2004 18.28 [1968,2039] Reject Ho

Source: Prepared by author

Harvey (1994) supports these findings that the emerging markets re-
turns are not normally distributed.

4.2. Autocorrelation function test: ACF

For a given positive integer I the t-ratio is statistic defined as

-1 1/2
t — ratio = Pz/(<1+22 pf)/T)
i=1
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where p,is the lag-I sample autocorrelation coefficient of r; it can be used
to test Hy: p;= 0 versus p;# 0. If {r,} is a stationary Gaussian series satisfying
p; = 0 for j >, the t-ratio is asymptotically distributed as a standard normal
random variable. Hence, the decision rule of the tests is to reject H, if t-ratio
> Zy/2 Where is the 100(1 - o/2)th percentile of the standard normal distri-
bution (Tsay 2005, p. 27).

In figures 6 and 7, at least 3 points of the t-ratio statistics fall outside the
95% confidence interval, giving evidence that random walk is not present
among the 16-year analysis period.

Figure 6. t-ratio 1st. subsample, 95% confidence interval
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Source: Prepared by author

Figure 7. t-ratio, second subsample , 95% confidence interval
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Source: Prepared by author
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4.3. Ljung and Box test: Q(m)

The Ljung and Box statistic Q(m) is widely used when it is required to test
jointly that several autocorrelations of r, are zero: Ho: p; =p, =+ =p,, =
0 against the alternative hypothesis H;: p; = 0 for some i e [ 1,...m}. {r:}
is assumed to be an iid sequence with E[r?] <. Q(m) is asymptotically a
chi-squared random variable with m degrees of freedom (Ljung and Box,
(1978)):

m pf
1=1T —1

Q(m) = T(T + 2)2 (5)

where p;is the lag-l sample autocorrelation of r.. Ho is rejected if it is
found at least one autocorrelation coefficient is significant. Two additional
replicas were performed, m = 16, 24, see Table 16.

All these conventional tests provide strong evidence that the null hy-
pothesis of randomness is not held in the [PC index over the study period.

Table 16. Ljung and Box statistic Q(m)

Sample Q(m=8) Q(m=16) Q(m=24)
1%t, period 27.66 47.92 57.58
2", Period 30.93 45.86 54.35

Whole period 45.67 67.72 77.92
25 14.07 26.30 36.42
Decision Reject Ho Reject Ho Reject Ho

Source: Prepared by author

The results obtained with the application of these three methods test-
ing randomness, build upon the first difference of the IPC time series and
provide strong evidence that the random walk hypothesis is not present in
the time series during the study period. The difference sign test focussing
on the number of positive returns and assuming normality (Ho), rejects
Ho, since the results fail within the 95% confidence interval. The other two
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methods used are based on individually and jointly autocorrelation tests
and also provide evidence that the random walk hypothesis does not hold
for the IPC time series at 5% significance level.

Conclusions

In this paper a new approach is introduced for the search of randomness
in stock market returns. This approach involves the application of Markov
chainsusingrunlength as the stochastic variable. In this analysis the concept
of cycle is also introduced, which consists of two runs of different signs in
sequence. The main objective is to detect if the Markov property holds for a
series of returns. The analysis is carried out using the Mexican Stock Market
Index for a 16-year period of daily stock closing prices. A division of the
dataset is done obtaining two periods, each 8 years long. Dealing with the
three sample periods as separate cases, we determine the stochasticmatrices
with state spaces consisting of the possible lengths of runs and cycles in the
three periods. By examining the second central moment of the steady-state
probability distributions, conclusions are drawn about homogeneity and
stationarity properties of the series under consideration. Finding out that
the cycle length distributions do not preserve time-homogeneity, and that
the Markovian property is not held on cycles. Results were corroborated
applying conventional random walk tests: difference sign, individual
and joint correlations. It is worth mentioning that the method of analysis
introduced here involves measuring procedures rather than hypothesis
testing, as detecting deviations from randomness is important for investors
as it might help to improve the possibilities of obtaining profits.

Finally, we conclude that the random walk hypothesis does not hold in
the IPC time series among the three periods.
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