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AbstRAct

This paper’s aim is to extend the Durham and Park’s (2012) model by incorporating the 
market fractional behavior. The extension examines the stochastic dynamics of stock 
indexes for several of the world´s main economies (US, Eurozone, UK and Japan), as 
well as emerging markets (China, Brazil and Mexico) during 1994-2017. The proposed 
model assumes that the returns are driven by fractional Brownian motions combined 
with Poisson processes and modulated by Markov chains. Risk factors such as: 
idiosyncratic volatility, market volatility, volatility of volatility were incorporated. To 
accomplish the purpose of the extension, Jump-GARCH and Markov regime-switching 
models were estimated, the Hurst coefficient was calculated and jumps behaviour was 
analysed during crisis periods. It was considered that the model accurately describes 
the stochastic dynamics of the stock indexes returns. The main empirical findings are 
that the USA stock market remains in high volatility most of the time, that the Brazil 
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Introduction

Over a long period of time, several researchers have dealt with the sto-
chastic dynamics and return probability distributions of the stock mar-

kets; however, there are still irregularities and stylized facts that need to be 
explained. The development of the stock market indexes has followed com-
plex dynamics derived from intricate global investment strategies, requiring 
more sophisticated models and tools. Most of the models in the specialized 
literature can be broadly classified into two large groups: Models seeking to 

Stock Market has the highest intensity of jumps, and that the mean return is the highest 
for the IPC and the lowest for Nikkei Index during the period under study.
JEL Classification: N20, B23, C02.
Keywords: Stock Index Return, Fractional Brownian Motion, Markov Regime-switch-
ing, Jump Processes.

Resumen

Esta investigación tiene como propósito extender el modelo de Durham y Park 
(2012) al incorporar la conducta fraccional del mercado. La extensión examina la 
dinámica estocástica de los índices bursátiles de economías desarrolladas como en 
EUA, Eurozona, Reino Unido y Japón, así como los mercados emergentes de China, 
Brasil y México durante 1994-2017. Nuestro modelo supone que los rendimientos 
son conducidos   por movimientos brownianos fraccionales, combinados con proce-
sos de Poisson y modulados por cadenas de Markov. Se incorporaron factores de 
riesgo como: volatilidad idiosincrática, volatilidad del mercado y volatilidad de la 
volatilidad. Para ello, se estimaron los modelos Jump-GARCH y de cambio de régimen 
Markoviano, se calcularon los coeficientes de Hurst y se analizó el comportamiento 
de los saltos en periodos de crisis. Se encontró que el modelo propuesto describe 
adecuadamente la dinámica estocástica de los rendimientos de los índices bursátiles 
estudiados. Los principales hallazgos empíricos son que el mercado de valores de 
EUA, se mantiene en alta volatilidad la mayor parte del tiempo, que el mercado de valores 
de Brasil tiene la mayor intensidad de saltos, que el rendimiento medio más alto lo 
presenta el IPC y el más bajo el índice Nikkei durante el período de estudio.
Clasificación JEL: N20, B23, C02.
Palabras clave: rendimiento de índices de acciones, movimiento fraccional brownia-
no, cambio de régimen markoviano, procesos de saltos.



Estocástica:
FINANZAS Y RIESGO

ISSN 2007-5383 versión digital, ISSN 2007-5375 versión impresa 165

Modeling Returns of Stock Indexes through Fractional Brownian…

explain the fundamental value of stock and models describing stock prices 
dynamics (Krause, 2001). For the latter, research has been focused on the 
volatility of aggregate stock markets through cross-section analysis (Ang, 
2004). Some other studies have used stochastic calculus to model stock re-
turns and time-varying volatility, for example, Christoffersen et al. (2009) 
built a two-factor stochastic volatility model useful to generate time-varying 
correlation. Along the same line, Johnson (2002) developed a stochastic vola-
tility model with time-varying correlation between returns and volatility, An 
et al. (2014) used option volatilities cross-section analysis to forecast stock 
returns, and López-Herrera et al. (2009) studied the long-term dependence 
on returns and volatilities.

Several studies focused on return distributions with time-varying mo-
ments, Carr and Wu (2007) proposed a stochastic skew model for foreign 
exchange rates; Pham and Touzi (1996) explored the stochastic volatility on 
equilibrium state prices; Durham and Park (2012) focussed on stochastic 
volatility in stock returns and found that return distributions have time-
varying skewness and kurtosis. Young et al. (2013) encountered that stocks 
with high sensitivity to innovation in implied market volatility and skew-
ness exhibit, on average, low returns; finally, Harvey and Siddique (1999) 
examined time-varying skewness through a GARCH model, and suggested 
that the relation between stock returns skewness and variance are linked 
to the seasonal variations in the conditional moments

Another factor that has been relevant when examining returns dynamics is 
the volatility of volatility.1 Some studies have found evidence that the variance 
risk premium depends on the volatility of volatility. For instance, Das and Sun-
daram (1999) examined the volatility of volatility and the correlation between 
the innovations in asset pricing. Also, Durham and Park (2012) developed a mi-
xed jump-diffusion process on options with volatility of volatility (cf. Ang et al., 
2006).

An important characteristic of the stock markets is the presence of 
unexpected and sudden jumps. Cremers et al. (2015) suggested, by using 
cross-section analysis, that stock returns have high sensitivity to jumps 
and volatility risks. Moreover, Du and Kapadia (2011) argued that the in-
dex VIX (Chicago Board Options Exchange Market Volatility Index) has a cri-
tical degree of bias related to jumps. Also, Branger et al. (2007) proposed 

1 Volatility of volatility is a measure of volatility expected of the n-day forward price 
of the volatility and this drives nearby volatility options price.
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an equilibrium model with jumps and stochastic volatility to describe the 
dynamics of stock returns. Along the same line, Heston (1993) dealt with 
Poisson jumps through a stochastic volatility model with returns affected 
by three factors: diffusive volatility shocks, diffusive price shocks, and price 
jumps. Finally, Bates (2008) examined investors’ behaviour towards crash 
risk and extreme and common events related to stock returns jumps. The 
author considers jumps and diffusion risks separately (cf. Johnson, 2002). 

There are other studies addressing options and futures markets, such 
as  Durham and Park et al. (2012). These authors developed a stochastic vo-
latility model to assess several characteristics that are consistent with va-
riation in the shape of return distributions by including regime-switching 
to feature random changes in the volatility of volatility, leverage effect, and 
jump intensity. Santa-Clara and Yan (2010) presented a model of option pri-
ces when the volatility of the diffusion shocks and the intensity of the jumps 
change over time, and show that diffusive volatility and jump intensity cap-
ture the ex-ante risk assessed by investors of the S&P500 index options. Mo-
reover, Vallejo and Venegas-Martínez (2017) modeled the dynamics of asset 
prices with time-inhomogeneous Markov chains and applying fractional 
Brownian motion with multiple Poisson jumps (cf. Venegas-Martínez, 2001 
and 2008).

The above investigations have highlighted the importance of including 
the effect of volatility, volatility of volatility, unexpected jumps, and regime-
switching on stock returns. The hypothesis of this paper establishes that 
the returns of stock indexes are properly driven by fractional Brownian mo-
tion implying long-term memory. This article mainly extends current stu-
dies from Durham and Park’s (2012) by modelling fractional behaviour of 
the stock markets and by examining the performance of returns and their 
jumps to describe the stochastic dynamics of stock indexes of various econo-
mies (US, Eurozone, UK and Japan, China, Brazil, and México) during 1994-
2017. To accomplish the purpose of the extension, Jump-GARCH and Markov 
regime-switching models were estimated, and the Hurst coefficients were 
calculated using different econometric programs (E-views, RATS and Prac-
ma) and R software.

This paper is organized as follows: the first section presents the exten-
ded stochastic model of stock index returns; section two describes the data 
and defines the endogenous and exogenous variables; section three calibra-
tes the proposed model; and finally the conclusions are provided. 
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1. Modelling Stock Index Returns

This section presents the theoretical background needed to model the 
dynamics of stock indexes returns by using fractional Brownian motion 
combined with Poisson process modulated with Markov switching-regime 
stochastic volatility. Most of the empirical studies suggest that market 
volatility varies over time and stocks with high sensitivity to both jump and 
volatility risks have low expected returns (Cremers et al. 2015). Durham and 
Park (2012) proposed a Markov regime-switching model of both volatility 
of volatility and jump intensity to determine the skewness and kurtosis of 
stock returns. Also, Vallejo-Jiménez and Venegas-Martínez (2017) developed 
a model that explains the dynamics of asset prices that are driven by multiple 
jumps, fractional Brownian motion, and Markov regime switching.2 

In the proposed multifactor risk model, stock returns are driven by the 
fractional Brownian motion, 
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Markov regime switching, 𝐸𝐸 = {𝜎𝜎1, 𝜎𝜎2}, aligned with Durham and Park (2012): 

d𝑦𝑦𝑡𝑡 = (𝜇𝜇 − 1
2 𝑣𝑣𝑡𝑡

2) d𝑡𝑡 + 𝑣𝑣𝑡𝑡d𝐵𝐵1𝑡𝑡
𝐻𝐻     (1) 

d𝑣𝑣𝑡𝑡 = 𝑎𝑎(𝑏𝑏 − 𝑣𝑣𝑡𝑡)d𝑡𝑡 + 𝜎𝜎𝑖𝑖d𝐵𝐵2𝑡𝑡
𝐻𝐻 + 𝛾𝛾d𝑁𝑁𝑡𝑡    (2) 

where d𝑦𝑦𝑡𝑡 is a dependent variable determining the dynamics of the stock index return,  

d𝐵𝐵1𝑡𝑡
𝐻𝐻  and d𝐵𝐵𝑡𝑡2𝑡𝑡

𝐻𝐻  are independent fractional Brownian motions, 𝐻𝐻 is the Hurst parameter, 𝜇𝜇 

is the annual mean (trend parameter) of returns, d𝑁𝑁𝑡𝑡 is a Poisson jumps, 𝑣𝑣𝑡𝑡 is the 

idiosyncratic volatility, E is the regime state (low volatility and high volatility), 𝜎𝜎𝑖𝑖 is the 

volatility state, 𝑑𝑑𝑣𝑣𝑡𝑡 is the volatility of volatility, a is the speed adjustment parameter, b is 

the long run mean (mean revering), and  𝛾𝛾 is the mean jump size.3 

A Markov regime-switching process (Hamilton, 2005) is a nonlinear time series 

model that integrates multiple structures to explain the behaviour of a state variable in 

                                                           
2 See also Christoffersen et al. (2009) and Ang et al. (2006).   

 
3 Other papers dealing with jump-diffusion processes are Venegas-Martínez (2000) and (2001) and Venegas-
Martínez and González-Aréchiga (2000).   
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d𝑦𝑦𝑡𝑡 = (𝜇𝜇 − 1
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2) d𝑡𝑡 + 𝑣𝑣𝑡𝑡d𝐵𝐵1𝑡𝑡
𝐻𝐻     (1) 
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A Markov regime-switching process (Hamilton, 2005) is a nonlinear time series 

model that integrates multiple structures to explain the behaviour of a state variable in 
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haviour of a state variable in different regimes. The probabilities of switch-
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𝑃𝑃 =  [𝑝𝑝11 𝑝𝑝12
𝑝𝑝21 𝑝𝑝22

]      

The fractional Brownian motion 𝐵𝐵𝑡𝑡
𝐻𝐻 is defined on a fixed probability space with its 

augmented filtration (Ω, 𝐹𝐹, (𝐹𝐹𝑡𝑡)𝑡𝑡∈[0,𝑇𝑇], 𝑃𝑃) and 𝐻𝐻 ϵ (0,1) is the  Hurst coefficient (Taqqu,
2013).   A Hurst coefficient 𝐻𝐻 larger than 0.5 measures long-term memory of time series. It 

describes the irregularity of the motion, predict the stock return and reflect the 

autocorrelation on returns. It is worth mentioning that if 𝐻𝐻 ≠ 1
2 , then 𝐵𝐵𝑡𝑡

𝐻𝐻 is not a 

semimartingale (Mandelbrot and Van Ness, 1968), and when H is smaller that 0.5, it 

reflects a mean reverting effect. This can be summarized as:4 

 

H = ½, the process is Brownian motion or Wiener process 

H > ½,  the increments are positively correlated (long memory) 

H < ½,  the increments are negatively correlated (mean reverting). 
 

It is important to point out that Cajueiro and Tabak (2005) find that the Hurst 

coefficient on Brazilian stock market is time-varying; Jamdee and Los (2005) showed that 

European options have long memory and are dependent on volatility; and Bender (2000) 

suggested that the law of one price holds in a market where the stock is driven by fractional 

Brownian motion. 

The ARCH model is briefly review, which is useful to explain the large residuals’ 

trend to cluster together (Engle, 1982). The ARCH model is given by: 

𝜎𝜎𝑡𝑡
2 = 𝜔𝜔 + ∑ 𝛼𝛼𝑖𝑖

𝑝𝑝
𝑖𝑖=1 𝜀𝜀𝑡𝑡−𝑖𝑖

2      (3) 

where 𝜎𝜎𝑡𝑡
2 is the conditional variance, 𝜔𝜔 and 𝛼𝛼 are unknown parameters, and 𝜀𝜀𝑡𝑡−𝑖𝑖

2  is the lag 

of the random error term. In the GARCH model the variance term depends on the lagged 

                                                           
4 Duncan and Pasik-Duncan (1991) introduce an integration theory named Wick-Itô-Skorohod integral for 
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variance term depends on the lagged variance as well as the lagged square 
residuals. This model allows to evaluate different types of persistence in 
volatility (Bollerslev, 1986). The GARCH model is represented by:
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and  
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The second innovation describes an unexpected jump when an unusual event occurs. The 
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number of jumps. The Poisson process 𝑁𝑁𝑡𝑡 with intensity parameter 𝜆𝜆 satisfies: 
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the previous period, and 𝛼𝛼 +  𝛽𝛽 is the level of persistence. Extending these approaches, the 

Jump-GARCH model is an alternative for modelling the dynamics of stock indexes when 

sudden and unexpected jumps occur (Chen, Lin and Lin, 2013). In this case, two stochastic 

innovations, 𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2, capture the dynamic of the return with no jump and jump, 

respectively. The innovations  𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2 are independent and satisfy:  

 𝜀𝜀𝑡𝑡 =  𝜀𝜀𝑡𝑡,1 +  𝜀𝜀𝑡𝑡,2     (5) 

The first innovation refers to market stability with no jumps, thus:  

𝜀𝜀𝑡𝑡,1 = 𝜎𝜎𝑡𝑡𝑢𝑢𝑡𝑡,         𝑢𝑢𝑡𝑡~𝑁𝑁(0,1)     (6) 

and  

E( 𝜀𝜀𝑡𝑡,1| 𝑦𝑦𝑡𝑡−1) = 0.     (7) 

The second innovation describes an unexpected jump when an unusual event occurs. The 

returns of the stock market are impacted by an unexpected event. The distribution of jumps 

follows a Poisson distribution and 𝜆𝜆 is the parameter of the jump intensity, hence: 

𝜀𝜀𝑡𝑡,2 = 𝑁𝑁𝑡𝑡 − E(𝑁𝑁𝑡𝑡|𝑦𝑦𝑡𝑡−1) = ∑ 𝛾𝛾𝑡𝑡,𝑘𝑘
𝑛𝑛𝑡𝑡
𝑘𝑘=1 − 𝜃𝜃𝜆𝜆𝑡𝑡,       𝑛𝑛𝑡𝑡|𝑦𝑦𝑡𝑡−1~𝑃𝑃(𝜆𝜆𝑡𝑡)  (8) 

and 

𝜀𝜀𝑡𝑡,2 = E( 𝜀𝜀𝑡𝑡,2| 𝑦𝑦𝑡𝑡−1) = 0     (9) 

where 𝑦𝑦𝑡𝑡 stands for the dynamics of the return, 𝑁𝑁𝑡𝑡 is the jump component, 𝛾𝛾𝑡𝑡,𝑘𝑘 is the jump 

size, 𝜆𝜆𝑡𝑡 is the jump intensity, 𝜃𝜃 is the component of jump intensity, and 𝑛𝑛𝑡𝑡 denotes the 

number of jumps. The Poisson process 𝑁𝑁𝑡𝑡 with intensity parameter 𝜆𝜆 satisfies: 

P{One jump on d𝑡𝑡} = P{d𝑁𝑁𝑡𝑡 = 1} = 𝜆𝜆𝜆𝜆𝑡𝑡 + 𝑜𝑜(d𝑡𝑡)    (10) 

 is the component of the variance in the previous peri-
od, and 

7 
 

variance as well as the lagged square residuals. This model allows to evaluate different 

types of persistence in volatility (Bollerslev, 1986). The GARCH model is represented by: 

𝜎𝜎𝑡𝑡
2 = 𝜔𝜔 + ∑ 𝛼𝛼𝑖𝑖

𝑝𝑝
𝑖𝑖=1 𝜀𝜀𝑡𝑡−𝑖𝑖

2 + ∑ 𝛽𝛽𝑖𝑖
𝑞𝑞
𝑖𝑖=1 𝜎𝜎𝑡𝑡−𝑗𝑗

2        𝜔𝜔, 𝛼𝛼, 𝛽𝛽 > 0      (4) 

where 𝜎𝜎𝑡𝑡
2 is the conditional variance, 𝜔𝜔 and 𝛼𝛼 and 𝛽𝛽 are unknown parameters, 𝜀𝜀𝑡𝑡−𝑖𝑖

2  is the 

lag of the random deviation term, 𝜎𝜎𝑡𝑡−𝑗𝑗
2  is the lag of the variance, 𝛼𝛼 is the component of the 

influence of random deviation in the previous period, 𝛽𝛽 is the component of the variance in 

the previous period, and 𝛼𝛼 +  𝛽𝛽 is the level of persistence. Extending these approaches, the 

Jump-GARCH model is an alternative for modelling the dynamics of stock indexes when 

sudden and unexpected jumps occur (Chen, Lin and Lin, 2013). In this case, two stochastic 

innovations, 𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2, capture the dynamic of the return with no jump and jump, 

respectively. The innovations  𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2 are independent and satisfy:  

 𝜀𝜀𝑡𝑡 =  𝜀𝜀𝑡𝑡,1 +  𝜀𝜀𝑡𝑡,2     (5) 

The first innovation refers to market stability with no jumps, thus:  

𝜀𝜀𝑡𝑡,1 = 𝜎𝜎𝑡𝑡𝑢𝑢𝑡𝑡,         𝑢𝑢𝑡𝑡~𝑁𝑁(0,1)     (6) 

and  

E( 𝜀𝜀𝑡𝑡,1| 𝑦𝑦𝑡𝑡−1) = 0.     (7) 

The second innovation describes an unexpected jump when an unusual event occurs. The 

returns of the stock market are impacted by an unexpected event. The distribution of jumps 

follows a Poisson distribution and 𝜆𝜆 is the parameter of the jump intensity, hence: 

𝜀𝜀𝑡𝑡,2 = 𝑁𝑁𝑡𝑡 − E(𝑁𝑁𝑡𝑡|𝑦𝑦𝑡𝑡−1) = ∑ 𝛾𝛾𝑡𝑡,𝑘𝑘
𝑛𝑛𝑡𝑡
𝑘𝑘=1 − 𝜃𝜃𝜆𝜆𝑡𝑡,       𝑛𝑛𝑡𝑡|𝑦𝑦𝑡𝑡−1~𝑃𝑃(𝜆𝜆𝑡𝑡)  (8) 

and 

𝜀𝜀𝑡𝑡,2 = E( 𝜀𝜀𝑡𝑡,2| 𝑦𝑦𝑡𝑡−1) = 0     (9) 

where 𝑦𝑦𝑡𝑡 stands for the dynamics of the return, 𝑁𝑁𝑡𝑡 is the jump component, 𝛾𝛾𝑡𝑡,𝑘𝑘 is the jump 

size, 𝜆𝜆𝑡𝑡 is the jump intensity, 𝜃𝜃 is the component of jump intensity, and 𝑛𝑛𝑡𝑡 denotes the 

number of jumps. The Poisson process 𝑁𝑁𝑡𝑡 with intensity parameter 𝜆𝜆 satisfies: 

P{One jump on d𝑡𝑡} = P{d𝑁𝑁𝑡𝑡 = 1} = 𝜆𝜆𝜆𝜆𝑡𝑡 + 𝑜𝑜(d𝑡𝑡)    (10) 

 is the level of persistence. Extending these approaches, the 
Jump-GARCH model is an alternative for modelling the dynamics of stock in-
dexes when sudden and unexpected jumps occur (Chen, Lin and Lin, 2013). 
In this case, two stochastic innovations, 
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variance as well as the lagged square residuals. This model allows to evaluate different 

types of persistence in volatility (Bollerslev, 1986). The GARCH model is represented by: 

𝜎𝜎𝑡𝑡
2 = 𝜔𝜔 + ∑ 𝛼𝛼𝑖𝑖

𝑝𝑝
𝑖𝑖=1 𝜀𝜀𝑡𝑡−𝑖𝑖

2 + ∑ 𝛽𝛽𝑖𝑖
𝑞𝑞
𝑖𝑖=1 𝜎𝜎𝑡𝑡−𝑗𝑗

2        𝜔𝜔, 𝛼𝛼, 𝛽𝛽 > 0      (4) 

where 𝜎𝜎𝑡𝑡
2 is the conditional variance, 𝜔𝜔 and 𝛼𝛼 and 𝛽𝛽 are unknown parameters, 𝜀𝜀𝑡𝑡−𝑖𝑖

2  is the 

lag of the random deviation term, 𝜎𝜎𝑡𝑡−𝑗𝑗
2  is the lag of the variance, 𝛼𝛼 is the component of the 

influence of random deviation in the previous period, 𝛽𝛽 is the component of the variance in 

the previous period, and 𝛼𝛼 +  𝛽𝛽 is the level of persistence. Extending these approaches, the 

Jump-GARCH model is an alternative for modelling the dynamics of stock indexes when 

sudden and unexpected jumps occur (Chen, Lin and Lin, 2013). In this case, two stochastic 

innovations, 𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2, capture the dynamic of the return with no jump and jump, 

respectively. The innovations  𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2 are independent and satisfy:  

 𝜀𝜀𝑡𝑡 =  𝜀𝜀𝑡𝑡,1 +  𝜀𝜀𝑡𝑡,2     (5) 

The first innovation refers to market stability with no jumps, thus:  

𝜀𝜀𝑡𝑡,1 = 𝜎𝜎𝑡𝑡𝑢𝑢𝑡𝑡,         𝑢𝑢𝑡𝑡~𝑁𝑁(0,1)     (6) 

and  

E( 𝜀𝜀𝑡𝑡,1| 𝑦𝑦𝑡𝑡−1) = 0.     (7) 

The second innovation describes an unexpected jump when an unusual event occurs. The 

returns of the stock market are impacted by an unexpected event. The distribution of jumps 

follows a Poisson distribution and 𝜆𝜆 is the parameter of the jump intensity, hence: 

𝜀𝜀𝑡𝑡,2 = 𝑁𝑁𝑡𝑡 − E(𝑁𝑁𝑡𝑡|𝑦𝑦𝑡𝑡−1) = ∑ 𝛾𝛾𝑡𝑡,𝑘𝑘
𝑛𝑛𝑡𝑡
𝑘𝑘=1 − 𝜃𝜃𝜆𝜆𝑡𝑡,       𝑛𝑛𝑡𝑡|𝑦𝑦𝑡𝑡−1~𝑃𝑃(𝜆𝜆𝑡𝑡)  (8) 

and 

𝜀𝜀𝑡𝑡,2 = E( 𝜀𝜀𝑡𝑡,2| 𝑦𝑦𝑡𝑡−1) = 0     (9) 

where 𝑦𝑦𝑡𝑡 stands for the dynamics of the return, 𝑁𝑁𝑡𝑡 is the jump component, 𝛾𝛾𝑡𝑡,𝑘𝑘 is the jump 

size, 𝜆𝜆𝑡𝑡 is the jump intensity, 𝜃𝜃 is the component of jump intensity, and 𝑛𝑛𝑡𝑡 denotes the 

number of jumps. The Poisson process 𝑁𝑁𝑡𝑡 with intensity parameter 𝜆𝜆 satisfies: 

P{One jump on d𝑡𝑡} = P{d𝑁𝑁𝑡𝑡 = 1} = 𝜆𝜆𝜆𝜆𝑡𝑡 + 𝑜𝑜(d𝑡𝑡)    (10) 

 and 
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variance as well as the lagged square residuals. This model allows to evaluate different 

types of persistence in volatility (Bollerslev, 1986). The GARCH model is represented by: 

𝜎𝜎𝑡𝑡
2 = 𝜔𝜔 + ∑ 𝛼𝛼𝑖𝑖

𝑝𝑝
𝑖𝑖=1 𝜀𝜀𝑡𝑡−𝑖𝑖

2 + ∑ 𝛽𝛽𝑖𝑖
𝑞𝑞
𝑖𝑖=1 𝜎𝜎𝑡𝑡−𝑗𝑗

2        𝜔𝜔, 𝛼𝛼, 𝛽𝛽 > 0      (4) 

where 𝜎𝜎𝑡𝑡
2 is the conditional variance, 𝜔𝜔 and 𝛼𝛼 and 𝛽𝛽 are unknown parameters, 𝜀𝜀𝑡𝑡−𝑖𝑖

2  is the 

lag of the random deviation term, 𝜎𝜎𝑡𝑡−𝑗𝑗
2  is the lag of the variance, 𝛼𝛼 is the component of the 

influence of random deviation in the previous period, 𝛽𝛽 is the component of the variance in 

the previous period, and 𝛼𝛼 +  𝛽𝛽 is the level of persistence. Extending these approaches, the 

Jump-GARCH model is an alternative for modelling the dynamics of stock indexes when 

sudden and unexpected jumps occur (Chen, Lin and Lin, 2013). In this case, two stochastic 

innovations, 𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2, capture the dynamic of the return with no jump and jump, 

respectively. The innovations  𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2 are independent and satisfy:  

 𝜀𝜀𝑡𝑡 =  𝜀𝜀𝑡𝑡,1 +  𝜀𝜀𝑡𝑡,2     (5) 

The first innovation refers to market stability with no jumps, thus:  

𝜀𝜀𝑡𝑡,1 = 𝜎𝜎𝑡𝑡𝑢𝑢𝑡𝑡,         𝑢𝑢𝑡𝑡~𝑁𝑁(0,1)     (6) 

and  

E( 𝜀𝜀𝑡𝑡,1| 𝑦𝑦𝑡𝑡−1) = 0.     (7) 

The second innovation describes an unexpected jump when an unusual event occurs. The 

returns of the stock market are impacted by an unexpected event. The distribution of jumps 

follows a Poisson distribution and 𝜆𝜆 is the parameter of the jump intensity, hence: 

𝜀𝜀𝑡𝑡,2 = 𝑁𝑁𝑡𝑡 − E(𝑁𝑁𝑡𝑡|𝑦𝑦𝑡𝑡−1) = ∑ 𝛾𝛾𝑡𝑡,𝑘𝑘
𝑛𝑛𝑡𝑡
𝑘𝑘=1 − 𝜃𝜃𝜆𝜆𝑡𝑡,       𝑛𝑛𝑡𝑡|𝑦𝑦𝑡𝑡−1~𝑃𝑃(𝜆𝜆𝑡𝑡)  (8) 

and 

𝜀𝜀𝑡𝑡,2 = E( 𝜀𝜀𝑡𝑡,2| 𝑦𝑦𝑡𝑡−1) = 0     (9) 

where 𝑦𝑦𝑡𝑡 stands for the dynamics of the return, 𝑁𝑁𝑡𝑡 is the jump component, 𝛾𝛾𝑡𝑡,𝑘𝑘 is the jump 

size, 𝜆𝜆𝑡𝑡 is the jump intensity, 𝜃𝜃 is the component of jump intensity, and 𝑛𝑛𝑡𝑡 denotes the 

number of jumps. The Poisson process 𝑁𝑁𝑡𝑡 with intensity parameter 𝜆𝜆 satisfies: 

P{One jump on d𝑡𝑡} = P{d𝑁𝑁𝑡𝑡 = 1} = 𝜆𝜆𝜆𝜆𝑡𝑡 + 𝑜𝑜(d𝑡𝑡)    (10) 

, capture the dynamic 
of the return with no jump and jump, respectively. The innovations 
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variance as well as the lagged square residuals. This model allows to evaluate different 

types of persistence in volatility (Bollerslev, 1986). The GARCH model is represented by: 

𝜎𝜎𝑡𝑡
2 = 𝜔𝜔 + ∑ 𝛼𝛼𝑖𝑖

𝑝𝑝
𝑖𝑖=1 𝜀𝜀𝑡𝑡−𝑖𝑖

2 + ∑ 𝛽𝛽𝑖𝑖
𝑞𝑞
𝑖𝑖=1 𝜎𝜎𝑡𝑡−𝑗𝑗

2        𝜔𝜔, 𝛼𝛼, 𝛽𝛽 > 0      (4) 

where 𝜎𝜎𝑡𝑡
2 is the conditional variance, 𝜔𝜔 and 𝛼𝛼 and 𝛽𝛽 are unknown parameters, 𝜀𝜀𝑡𝑡−𝑖𝑖

2  is the 

lag of the random deviation term, 𝜎𝜎𝑡𝑡−𝑗𝑗
2  is the lag of the variance, 𝛼𝛼 is the component of the 

influence of random deviation in the previous period, 𝛽𝛽 is the component of the variance in 

the previous period, and 𝛼𝛼 +  𝛽𝛽 is the level of persistence. Extending these approaches, the 

Jump-GARCH model is an alternative for modelling the dynamics of stock indexes when 

sudden and unexpected jumps occur (Chen, Lin and Lin, 2013). In this case, two stochastic 

innovations, 𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2, capture the dynamic of the return with no jump and jump, 

respectively. The innovations  𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2 are independent and satisfy:  

 𝜀𝜀𝑡𝑡 =  𝜀𝜀𝑡𝑡,1 +  𝜀𝜀𝑡𝑡,2     (5) 

The first innovation refers to market stability with no jumps, thus:  

𝜀𝜀𝑡𝑡,1 = 𝜎𝜎𝑡𝑡𝑢𝑢𝑡𝑡,         𝑢𝑢𝑡𝑡~𝑁𝑁(0,1)     (6) 

and  

E( 𝜀𝜀𝑡𝑡,1| 𝑦𝑦𝑡𝑡−1) = 0.     (7) 

The second innovation describes an unexpected jump when an unusual event occurs. The 

returns of the stock market are impacted by an unexpected event. The distribution of jumps 

follows a Poisson distribution and 𝜆𝜆 is the parameter of the jump intensity, hence: 

𝜀𝜀𝑡𝑡,2 = 𝑁𝑁𝑡𝑡 − E(𝑁𝑁𝑡𝑡|𝑦𝑦𝑡𝑡−1) = ∑ 𝛾𝛾𝑡𝑡,𝑘𝑘
𝑛𝑛𝑡𝑡
𝑘𝑘=1 − 𝜃𝜃𝜆𝜆𝑡𝑡,       𝑛𝑛𝑡𝑡|𝑦𝑦𝑡𝑡−1~𝑃𝑃(𝜆𝜆𝑡𝑡)  (8) 

and 

𝜀𝜀𝑡𝑡,2 = E( 𝜀𝜀𝑡𝑡,2| 𝑦𝑦𝑡𝑡−1) = 0     (9) 

where 𝑦𝑦𝑡𝑡 stands for the dynamics of the return, 𝑁𝑁𝑡𝑡 is the jump component, 𝛾𝛾𝑡𝑡,𝑘𝑘 is the jump 

size, 𝜆𝜆𝑡𝑡 is the jump intensity, 𝜃𝜃 is the component of jump intensity, and 𝑛𝑛𝑡𝑡 denotes the 

number of jumps. The Poisson process 𝑁𝑁𝑡𝑡 with intensity parameter 𝜆𝜆 satisfies: 

P{One jump on d𝑡𝑡} = P{d𝑁𝑁𝑡𝑡 = 1} = 𝜆𝜆𝜆𝜆𝑡𝑡 + 𝑜𝑜(d𝑡𝑡)    (10) 

 and 
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variance as well as the lagged square residuals. This model allows to evaluate different 

types of persistence in volatility (Bollerslev, 1986). The GARCH model is represented by: 

𝜎𝜎𝑡𝑡
2 = 𝜔𝜔 + ∑ 𝛼𝛼𝑖𝑖

𝑝𝑝
𝑖𝑖=1 𝜀𝜀𝑡𝑡−𝑖𝑖

2 + ∑ 𝛽𝛽𝑖𝑖
𝑞𝑞
𝑖𝑖=1 𝜎𝜎𝑡𝑡−𝑗𝑗

2        𝜔𝜔, 𝛼𝛼, 𝛽𝛽 > 0      (4) 

where 𝜎𝜎𝑡𝑡
2 is the conditional variance, 𝜔𝜔 and 𝛼𝛼 and 𝛽𝛽 are unknown parameters, 𝜀𝜀𝑡𝑡−𝑖𝑖

2  is the 

lag of the random deviation term, 𝜎𝜎𝑡𝑡−𝑗𝑗
2  is the lag of the variance, 𝛼𝛼 is the component of the 

influence of random deviation in the previous period, 𝛽𝛽 is the component of the variance in 

the previous period, and 𝛼𝛼 +  𝛽𝛽 is the level of persistence. Extending these approaches, the 

Jump-GARCH model is an alternative for modelling the dynamics of stock indexes when 

sudden and unexpected jumps occur (Chen, Lin and Lin, 2013). In this case, two stochastic 

innovations, 𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2, capture the dynamic of the return with no jump and jump, 

respectively. The innovations  𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2 are independent and satisfy:  

 𝜀𝜀𝑡𝑡 =  𝜀𝜀𝑡𝑡,1 +  𝜀𝜀𝑡𝑡,2     (5) 

The first innovation refers to market stability with no jumps, thus:  

𝜀𝜀𝑡𝑡,1 = 𝜎𝜎𝑡𝑡𝑢𝑢𝑡𝑡,         𝑢𝑢𝑡𝑡~𝑁𝑁(0,1)     (6) 

and  

E( 𝜀𝜀𝑡𝑡,1| 𝑦𝑦𝑡𝑡−1) = 0.     (7) 

The second innovation describes an unexpected jump when an unusual event occurs. The 

returns of the stock market are impacted by an unexpected event. The distribution of jumps 

follows a Poisson distribution and 𝜆𝜆 is the parameter of the jump intensity, hence: 

𝜀𝜀𝑡𝑡,2 = 𝑁𝑁𝑡𝑡 − E(𝑁𝑁𝑡𝑡|𝑦𝑦𝑡𝑡−1) = ∑ 𝛾𝛾𝑡𝑡,𝑘𝑘
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𝑘𝑘=1 − 𝜃𝜃𝜆𝜆𝑡𝑡,       𝑛𝑛𝑡𝑡|𝑦𝑦𝑡𝑡−1~𝑃𝑃(𝜆𝜆𝑡𝑡)  (8) 

and 

𝜀𝜀𝑡𝑡,2 = E( 𝜀𝜀𝑡𝑡,2| 𝑦𝑦𝑡𝑡−1) = 0     (9) 

where 𝑦𝑦𝑡𝑡 stands for the dynamics of the return, 𝑁𝑁𝑡𝑡 is the jump component, 𝛾𝛾𝑡𝑡,𝑘𝑘 is the jump 

size, 𝜆𝜆𝑡𝑡 is the jump intensity, 𝜃𝜃 is the component of jump intensity, and 𝑛𝑛𝑡𝑡 denotes the 

number of jumps. The Poisson process 𝑁𝑁𝑡𝑡 with intensity parameter 𝜆𝜆 satisfies: 

P{One jump on d𝑡𝑡} = P{d𝑁𝑁𝑡𝑡 = 1} = 𝜆𝜆𝜆𝜆𝑡𝑡 + 𝑜𝑜(d𝑡𝑡)    (10) 
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variance as well as the lagged square residuals. This model allows to evaluate different 

types of persistence in volatility (Bollerslev, 1986). The GARCH model is represented by: 

𝜎𝜎𝑡𝑡
2 = 𝜔𝜔 + ∑ 𝛼𝛼𝑖𝑖

𝑝𝑝
𝑖𝑖=1 𝜀𝜀𝑡𝑡−𝑖𝑖

2 + ∑ 𝛽𝛽𝑖𝑖
𝑞𝑞
𝑖𝑖=1 𝜎𝜎𝑡𝑡−𝑗𝑗

2        𝜔𝜔, 𝛼𝛼, 𝛽𝛽 > 0      (4) 

where 𝜎𝜎𝑡𝑡
2 is the conditional variance, 𝜔𝜔 and 𝛼𝛼 and 𝛽𝛽 are unknown parameters, 𝜀𝜀𝑡𝑡−𝑖𝑖

2  is the 

lag of the random deviation term, 𝜎𝜎𝑡𝑡−𝑗𝑗
2  is the lag of the variance, 𝛼𝛼 is the component of the 

influence of random deviation in the previous period, 𝛽𝛽 is the component of the variance in 

the previous period, and 𝛼𝛼 +  𝛽𝛽 is the level of persistence. Extending these approaches, the 

Jump-GARCH model is an alternative for modelling the dynamics of stock indexes when 

sudden and unexpected jumps occur (Chen, Lin and Lin, 2013). In this case, two stochastic 

innovations, 𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2, capture the dynamic of the return with no jump and jump, 

respectively. The innovations  𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2 are independent and satisfy:  

 𝜀𝜀𝑡𝑡 =  𝜀𝜀𝑡𝑡,1 +  𝜀𝜀𝑡𝑡,2     (5) 
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and  

E( 𝜀𝜀𝑡𝑡,1| 𝑦𝑦𝑡𝑡−1) = 0.     (7) 

The second innovation describes an unexpected jump when an unusual event occurs. The 
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where 𝑦𝑦𝑡𝑡 stands for the dynamics of the return, 𝑁𝑁𝑡𝑡 is the jump component, 𝛾𝛾𝑡𝑡,𝑘𝑘 is the jump 

size, 𝜆𝜆𝑡𝑡 is the jump intensity, 𝜃𝜃 is the component of jump intensity, and 𝑛𝑛𝑡𝑡 denotes the 

number of jumps. The Poisson process 𝑁𝑁𝑡𝑡 with intensity parameter 𝜆𝜆 satisfies: 

P{One jump on d𝑡𝑡} = P{d𝑁𝑁𝑡𝑡 = 1} = 𝜆𝜆𝜆𝜆𝑡𝑡 + 𝑜𝑜(d𝑡𝑡)    (10) 
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variance as well as the lagged square residuals. This model allows to evaluate different 

types of persistence in volatility (Bollerslev, 1986). The GARCH model is represented by: 

𝜎𝜎𝑡𝑡
2 = 𝜔𝜔 + ∑ 𝛼𝛼𝑖𝑖

𝑝𝑝
𝑖𝑖=1 𝜀𝜀𝑡𝑡−𝑖𝑖

2 + ∑ 𝛽𝛽𝑖𝑖
𝑞𝑞
𝑖𝑖=1 𝜎𝜎𝑡𝑡−𝑗𝑗

2        𝜔𝜔, 𝛼𝛼, 𝛽𝛽 > 0      (4) 

where 𝜎𝜎𝑡𝑡
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and  
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and 

𝜀𝜀𝑡𝑡,2 = E( 𝜀𝜀𝑡𝑡,2| 𝑦𝑦𝑡𝑡−1) = 0     (9) 

where 𝑦𝑦𝑡𝑡 stands for the dynamics of the return, 𝑁𝑁𝑡𝑡 is the jump component, 𝛾𝛾𝑡𝑡,𝑘𝑘 is the jump 

size, 𝜆𝜆𝑡𝑡 is the jump intensity, 𝜃𝜃 is the component of jump intensity, and 𝑛𝑛𝑡𝑡 denotes the 

number of jumps. The Poisson process 𝑁𝑁𝑡𝑡 with intensity parameter 𝜆𝜆 satisfies: 
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variance as well as the lagged square residuals. This model allows to evaluate different 

types of persistence in volatility (Bollerslev, 1986). The GARCH model is represented by: 

𝜎𝜎𝑡𝑡
2 = 𝜔𝜔 + ∑ 𝛼𝛼𝑖𝑖

𝑝𝑝
𝑖𝑖=1 𝜀𝜀𝑡𝑡−𝑖𝑖

2 + ∑ 𝛽𝛽𝑖𝑖
𝑞𝑞
𝑖𝑖=1 𝜎𝜎𝑡𝑡−𝑗𝑗

2        𝜔𝜔, 𝛼𝛼, 𝛽𝛽 > 0      (4) 

where 𝜎𝜎𝑡𝑡
2 is the conditional variance, 𝜔𝜔 and 𝛼𝛼 and 𝛽𝛽 are unknown parameters, 𝜀𝜀𝑡𝑡−𝑖𝑖

2  is the 

lag of the random deviation term, 𝜎𝜎𝑡𝑡−𝑗𝑗
2  is the lag of the variance, 𝛼𝛼 is the component of the 

influence of random deviation in the previous period, 𝛽𝛽 is the component of the variance in 

the previous period, and 𝛼𝛼 +  𝛽𝛽 is the level of persistence. Extending these approaches, the 

Jump-GARCH model is an alternative for modelling the dynamics of stock indexes when 

sudden and unexpected jumps occur (Chen, Lin and Lin, 2013). In this case, two stochastic 

innovations, 𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2, capture the dynamic of the return with no jump and jump, 

respectively. The innovations  𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2 are independent and satisfy:  

 𝜀𝜀𝑡𝑡 =  𝜀𝜀𝑡𝑡,1 +  𝜀𝜀𝑡𝑡,2     (5) 

The first innovation refers to market stability with no jumps, thus:  

𝜀𝜀𝑡𝑡,1 = 𝜎𝜎𝑡𝑡𝑢𝑢𝑡𝑡,         𝑢𝑢𝑡𝑡~𝑁𝑁(0,1)     (6) 

and  

E( 𝜀𝜀𝑡𝑡,1| 𝑦𝑦𝑡𝑡−1) = 0.     (7) 

The second innovation describes an unexpected jump when an unusual event occurs. The 

returns of the stock market are impacted by an unexpected event. The distribution of jumps 

follows a Poisson distribution and 𝜆𝜆 is the parameter of the jump intensity, hence: 

𝜀𝜀𝑡𝑡,2 = 𝑁𝑁𝑡𝑡 − E(𝑁𝑁𝑡𝑡|𝑦𝑦𝑡𝑡−1) = ∑ 𝛾𝛾𝑡𝑡,𝑘𝑘
𝑛𝑛𝑡𝑡
𝑘𝑘=1 − 𝜃𝜃𝜆𝜆𝑡𝑡,       𝑛𝑛𝑡𝑡|𝑦𝑦𝑡𝑡−1~𝑃𝑃(𝜆𝜆𝑡𝑡)  (8) 

and 

𝜀𝜀𝑡𝑡,2 = E( 𝜀𝜀𝑡𝑡,2| 𝑦𝑦𝑡𝑡−1) = 0     (9) 

where 𝑦𝑦𝑡𝑡 stands for the dynamics of the return, 𝑁𝑁𝑡𝑡 is the jump component, 𝛾𝛾𝑡𝑡,𝑘𝑘 is the jump 

size, 𝜆𝜆𝑡𝑡 is the jump intensity, 𝜃𝜃 is the component of jump intensity, and 𝑛𝑛𝑡𝑡 denotes the 

number of jumps. The Poisson process 𝑁𝑁𝑡𝑡 with intensity parameter 𝜆𝜆 satisfies: 

P{One jump on d𝑡𝑡} = P{d𝑁𝑁𝑡𝑡 = 1} = 𝜆𝜆𝜆𝜆𝑡𝑡 + 𝑜𝑜(d𝑡𝑡)    (10) 
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variance as well as the lagged square residuals. This model allows to evaluate different 

types of persistence in volatility (Bollerslev, 1986). The GARCH model is represented by: 

𝜎𝜎𝑡𝑡
2 = 𝜔𝜔 + ∑ 𝛼𝛼𝑖𝑖

𝑝𝑝
𝑖𝑖=1 𝜀𝜀𝑡𝑡−𝑖𝑖

2 + ∑ 𝛽𝛽𝑖𝑖
𝑞𝑞
𝑖𝑖=1 𝜎𝜎𝑡𝑡−𝑗𝑗

2        𝜔𝜔, 𝛼𝛼, 𝛽𝛽 > 0      (4) 

where 𝜎𝜎𝑡𝑡
2 is the conditional variance, 𝜔𝜔 and 𝛼𝛼 and 𝛽𝛽 are unknown parameters, 𝜀𝜀𝑡𝑡−𝑖𝑖

2  is the 

lag of the random deviation term, 𝜎𝜎𝑡𝑡−𝑗𝑗
2  is the lag of the variance, 𝛼𝛼 is the component of the 

influence of random deviation in the previous period, 𝛽𝛽 is the component of the variance in 

the previous period, and 𝛼𝛼 +  𝛽𝛽 is the level of persistence. Extending these approaches, the 

Jump-GARCH model is an alternative for modelling the dynamics of stock indexes when 

sudden and unexpected jumps occur (Chen, Lin and Lin, 2013). In this case, two stochastic 

innovations, 𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2, capture the dynamic of the return with no jump and jump, 

respectively. The innovations  𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2 are independent and satisfy:  

 𝜀𝜀𝑡𝑡 =  𝜀𝜀𝑡𝑡,1 +  𝜀𝜀𝑡𝑡,2     (5) 

The first innovation refers to market stability with no jumps, thus:  

𝜀𝜀𝑡𝑡,1 = 𝜎𝜎𝑡𝑡𝑢𝑢𝑡𝑡,         𝑢𝑢𝑡𝑡~𝑁𝑁(0,1)     (6) 

and  

E( 𝜀𝜀𝑡𝑡,1| 𝑦𝑦𝑡𝑡−1) = 0.     (7) 

The second innovation describes an unexpected jump when an unusual event occurs. The 

returns of the stock market are impacted by an unexpected event. The distribution of jumps 

follows a Poisson distribution and 𝜆𝜆 is the parameter of the jump intensity, hence: 

𝜀𝜀𝑡𝑡,2 = 𝑁𝑁𝑡𝑡 − E(𝑁𝑁𝑡𝑡|𝑦𝑦𝑡𝑡−1) = ∑ 𝛾𝛾𝑡𝑡,𝑘𝑘
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and 

𝜀𝜀𝑡𝑡,2 = E( 𝜀𝜀𝑡𝑡,2| 𝑦𝑦𝑡𝑡−1) = 0     (9) 

where 𝑦𝑦𝑡𝑡 stands for the dynamics of the return, 𝑁𝑁𝑡𝑡 is the jump component, 𝛾𝛾𝑡𝑡,𝑘𝑘 is the jump 

size, 𝜆𝜆𝑡𝑡 is the jump intensity, 𝜃𝜃 is the component of jump intensity, and 𝑛𝑛𝑡𝑡 denotes the 

number of jumps. The Poisson process 𝑁𝑁𝑡𝑡 with intensity parameter 𝜆𝜆 satisfies: 

P{One jump on d𝑡𝑡} = P{d𝑁𝑁𝑡𝑡 = 1} = 𝜆𝜆𝜆𝜆𝑡𝑡 + 𝑜𝑜(d𝑡𝑡)    (10) 
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variance as well as the lagged square residuals. This model allows to evaluate different 

types of persistence in volatility (Bollerslev, 1986). The GARCH model is represented by: 
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𝑖𝑖=1 𝜀𝜀𝑡𝑡−𝑖𝑖

2 + ∑ 𝛽𝛽𝑖𝑖
𝑞𝑞
𝑖𝑖=1 𝜎𝜎𝑡𝑡−𝑗𝑗
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where 𝜎𝜎𝑡𝑡
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2  is the 

lag of the random deviation term, 𝜎𝜎𝑡𝑡−𝑗𝑗
2  is the lag of the variance, 𝛼𝛼 is the component of the 

influence of random deviation in the previous period, 𝛽𝛽 is the component of the variance in 

the previous period, and 𝛼𝛼 +  𝛽𝛽 is the level of persistence. Extending these approaches, the 

Jump-GARCH model is an alternative for modelling the dynamics of stock indexes when 

sudden and unexpected jumps occur (Chen, Lin and Lin, 2013). In this case, two stochastic 

innovations, 𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2, capture the dynamic of the return with no jump and jump, 

respectively. The innovations  𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2 are independent and satisfy:  

 𝜀𝜀𝑡𝑡 =  𝜀𝜀𝑡𝑡,1 +  𝜀𝜀𝑡𝑡,2     (5) 

The first innovation refers to market stability with no jumps, thus:  

𝜀𝜀𝑡𝑡,1 = 𝜎𝜎𝑡𝑡𝑢𝑢𝑡𝑡,         𝑢𝑢𝑡𝑡~𝑁𝑁(0,1)     (6) 

and  

E( 𝜀𝜀𝑡𝑡,1| 𝑦𝑦𝑡𝑡−1) = 0.     (7) 

The second innovation describes an unexpected jump when an unusual event occurs. The 

returns of the stock market are impacted by an unexpected event. The distribution of jumps 

follows a Poisson distribution and 𝜆𝜆 is the parameter of the jump intensity, hence: 
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where 𝑦𝑦𝑡𝑡 stands for the dynamics of the return, 𝑁𝑁𝑡𝑡 is the jump component, 𝛾𝛾𝑡𝑡,𝑘𝑘 is the jump 

size, 𝜆𝜆𝑡𝑡 is the jump intensity, 𝜃𝜃 is the component of jump intensity, and 𝑛𝑛𝑡𝑡 denotes the 

number of jumps. The Poisson process 𝑁𝑁𝑡𝑡 with intensity parameter 𝜆𝜆 satisfies: 

P{One jump on d𝑡𝑡} = P{d𝑁𝑁𝑡𝑡 = 1} = 𝜆𝜆𝜆𝜆𝑡𝑡 + 𝑜𝑜(d𝑡𝑡)    (10) 

 (8)
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variance as well as the lagged square residuals. This model allows to evaluate different 

types of persistence in volatility (Bollerslev, 1986). The GARCH model is represented by: 

𝜎𝜎𝑡𝑡
2 = 𝜔𝜔 + ∑ 𝛼𝛼𝑖𝑖

𝑝𝑝
𝑖𝑖=1 𝜀𝜀𝑡𝑡−𝑖𝑖

2 + ∑ 𝛽𝛽𝑖𝑖
𝑞𝑞
𝑖𝑖=1 𝜎𝜎𝑡𝑡−𝑗𝑗

2        𝜔𝜔, 𝛼𝛼, 𝛽𝛽 > 0      (4) 

where 𝜎𝜎𝑡𝑡
2 is the conditional variance, 𝜔𝜔 and 𝛼𝛼 and 𝛽𝛽 are unknown parameters, 𝜀𝜀𝑡𝑡−𝑖𝑖

2  is the 

lag of the random deviation term, 𝜎𝜎𝑡𝑡−𝑗𝑗
2  is the lag of the variance, 𝛼𝛼 is the component of the 

influence of random deviation in the previous period, 𝛽𝛽 is the component of the variance in 

the previous period, and 𝛼𝛼 +  𝛽𝛽 is the level of persistence. Extending these approaches, the 

Jump-GARCH model is an alternative for modelling the dynamics of stock indexes when 

sudden and unexpected jumps occur (Chen, Lin and Lin, 2013). In this case, two stochastic 

innovations, 𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2, capture the dynamic of the return with no jump and jump, 

respectively. The innovations  𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2 are independent and satisfy:  

 𝜀𝜀𝑡𝑡 =  𝜀𝜀𝑡𝑡,1 +  𝜀𝜀𝑡𝑡,2     (5) 

The first innovation refers to market stability with no jumps, thus:  

𝜀𝜀𝑡𝑡,1 = 𝜎𝜎𝑡𝑡𝑢𝑢𝑡𝑡,         𝑢𝑢𝑡𝑡~𝑁𝑁(0,1)     (6) 

and  

E( 𝜀𝜀𝑡𝑡,1| 𝑦𝑦𝑡𝑡−1) = 0.     (7) 

The second innovation describes an unexpected jump when an unusual event occurs. The 

returns of the stock market are impacted by an unexpected event. The distribution of jumps 

follows a Poisson distribution and 𝜆𝜆 is the parameter of the jump intensity, hence: 

𝜀𝜀𝑡𝑡,2 = 𝑁𝑁𝑡𝑡 − E(𝑁𝑁𝑡𝑡|𝑦𝑦𝑡𝑡−1) = ∑ 𝛾𝛾𝑡𝑡,𝑘𝑘
𝑛𝑛𝑡𝑡
𝑘𝑘=1 − 𝜃𝜃𝜆𝜆𝑡𝑡,       𝑛𝑛𝑡𝑡|𝑦𝑦𝑡𝑡−1~𝑃𝑃(𝜆𝜆𝑡𝑡)  (8) 

and 

𝜀𝜀𝑡𝑡,2 = E( 𝜀𝜀𝑡𝑡,2| 𝑦𝑦𝑡𝑡−1) = 0     (9) 

where 𝑦𝑦𝑡𝑡 stands for the dynamics of the return, 𝑁𝑁𝑡𝑡 is the jump component, 𝛾𝛾𝑡𝑡,𝑘𝑘 is the jump 

size, 𝜆𝜆𝑡𝑡 is the jump intensity, 𝜃𝜃 is the component of jump intensity, and 𝑛𝑛𝑡𝑡 denotes the 

number of jumps. The Poisson process 𝑁𝑁𝑡𝑡 with intensity parameter 𝜆𝜆 satisfies: 

P{One jump on d𝑡𝑡} = P{d𝑁𝑁𝑡𝑡 = 1} = 𝜆𝜆𝜆𝜆𝑡𝑡 + 𝑜𝑜(d𝑡𝑡)    (10) 
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variance as well as the lagged square residuals. This model allows to evaluate different 

types of persistence in volatility (Bollerslev, 1986). The GARCH model is represented by: 

𝜎𝜎𝑡𝑡
2 = 𝜔𝜔 + ∑ 𝛼𝛼𝑖𝑖

𝑝𝑝
𝑖𝑖=1 𝜀𝜀𝑡𝑡−𝑖𝑖

2 + ∑ 𝛽𝛽𝑖𝑖
𝑞𝑞
𝑖𝑖=1 𝜎𝜎𝑡𝑡−𝑗𝑗

2        𝜔𝜔, 𝛼𝛼, 𝛽𝛽 > 0      (4) 

where 𝜎𝜎𝑡𝑡
2 is the conditional variance, 𝜔𝜔 and 𝛼𝛼 and 𝛽𝛽 are unknown parameters, 𝜀𝜀𝑡𝑡−𝑖𝑖

2  is the 

lag of the random deviation term, 𝜎𝜎𝑡𝑡−𝑗𝑗
2  is the lag of the variance, 𝛼𝛼 is the component of the 

influence of random deviation in the previous period, 𝛽𝛽 is the component of the variance in 

the previous period, and 𝛼𝛼 +  𝛽𝛽 is the level of persistence. Extending these approaches, the 

Jump-GARCH model is an alternative for modelling the dynamics of stock indexes when 

sudden and unexpected jumps occur (Chen, Lin and Lin, 2013). In this case, two stochastic 

innovations, 𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2, capture the dynamic of the return with no jump and jump, 

respectively. The innovations  𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2 are independent and satisfy:  

 𝜀𝜀𝑡𝑡 =  𝜀𝜀𝑡𝑡,1 +  𝜀𝜀𝑡𝑡,2     (5) 

The first innovation refers to market stability with no jumps, thus:  

𝜀𝜀𝑡𝑡,1 = 𝜎𝜎𝑡𝑡𝑢𝑢𝑡𝑡,         𝑢𝑢𝑡𝑡~𝑁𝑁(0,1)     (6) 

and  

E( 𝜀𝜀𝑡𝑡,1| 𝑦𝑦𝑡𝑡−1) = 0.     (7) 

The second innovation describes an unexpected jump when an unusual event occurs. The 

returns of the stock market are impacted by an unexpected event. The distribution of jumps 

follows a Poisson distribution and 𝜆𝜆 is the parameter of the jump intensity, hence: 

𝜀𝜀𝑡𝑡,2 = 𝑁𝑁𝑡𝑡 − E(𝑁𝑁𝑡𝑡|𝑦𝑦𝑡𝑡−1) = ∑ 𝛾𝛾𝑡𝑡,𝑘𝑘
𝑛𝑛𝑡𝑡
𝑘𝑘=1 − 𝜃𝜃𝜆𝜆𝑡𝑡,       𝑛𝑛𝑡𝑡|𝑦𝑦𝑡𝑡−1~𝑃𝑃(𝜆𝜆𝑡𝑡)  (8) 

and 

𝜀𝜀𝑡𝑡,2 = E( 𝜀𝜀𝑡𝑡,2| 𝑦𝑦𝑡𝑡−1) = 0     (9) 

where 𝑦𝑦𝑡𝑡 stands for the dynamics of the return, 𝑁𝑁𝑡𝑡 is the jump component, 𝛾𝛾𝑡𝑡,𝑘𝑘 is the jump 

size, 𝜆𝜆𝑡𝑡 is the jump intensity, 𝜃𝜃 is the component of jump intensity, and 𝑛𝑛𝑡𝑡 denotes the 

number of jumps. The Poisson process 𝑁𝑁𝑡𝑡 with intensity parameter 𝜆𝜆 satisfies: 

P{One jump on d𝑡𝑡} = P{d𝑁𝑁𝑡𝑡 = 1} = 𝜆𝜆𝜆𝜆𝑡𝑡 + 𝑜𝑜(d𝑡𝑡)    (10) 
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variance as well as the lagged square residuals. This model allows to evaluate different 

types of persistence in volatility (Bollerslev, 1986). The GARCH model is represented by: 

𝜎𝜎𝑡𝑡
2 = 𝜔𝜔 + ∑ 𝛼𝛼𝑖𝑖

𝑝𝑝
𝑖𝑖=1 𝜀𝜀𝑡𝑡−𝑖𝑖

2 + ∑ 𝛽𝛽𝑖𝑖
𝑞𝑞
𝑖𝑖=1 𝜎𝜎𝑡𝑡−𝑗𝑗

2        𝜔𝜔, 𝛼𝛼, 𝛽𝛽 > 0      (4) 

where 𝜎𝜎𝑡𝑡
2 is the conditional variance, 𝜔𝜔 and 𝛼𝛼 and 𝛽𝛽 are unknown parameters, 𝜀𝜀𝑡𝑡−𝑖𝑖

2  is the 

lag of the random deviation term, 𝜎𝜎𝑡𝑡−𝑗𝑗
2  is the lag of the variance, 𝛼𝛼 is the component of the 

influence of random deviation in the previous period, 𝛽𝛽 is the component of the variance in 

the previous period, and 𝛼𝛼 +  𝛽𝛽 is the level of persistence. Extending these approaches, the 

Jump-GARCH model is an alternative for modelling the dynamics of stock indexes when 

sudden and unexpected jumps occur (Chen, Lin and Lin, 2013). In this case, two stochastic 

innovations, 𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2, capture the dynamic of the return with no jump and jump, 

respectively. The innovations  𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2 are independent and satisfy:  

 𝜀𝜀𝑡𝑡 =  𝜀𝜀𝑡𝑡,1 +  𝜀𝜀𝑡𝑡,2     (5) 

The first innovation refers to market stability with no jumps, thus:  

𝜀𝜀𝑡𝑡,1 = 𝜎𝜎𝑡𝑡𝑢𝑢𝑡𝑡,         𝑢𝑢𝑡𝑡~𝑁𝑁(0,1)     (6) 

and  

E( 𝜀𝜀𝑡𝑡,1| 𝑦𝑦𝑡𝑡−1) = 0.     (7) 

The second innovation describes an unexpected jump when an unusual event occurs. The 

returns of the stock market are impacted by an unexpected event. The distribution of jumps 

follows a Poisson distribution and 𝜆𝜆 is the parameter of the jump intensity, hence: 

𝜀𝜀𝑡𝑡,2 = 𝑁𝑁𝑡𝑡 − E(𝑁𝑁𝑡𝑡|𝑦𝑦𝑡𝑡−1) = ∑ 𝛾𝛾𝑡𝑡,𝑘𝑘
𝑛𝑛𝑡𝑡
𝑘𝑘=1 − 𝜃𝜃𝜆𝜆𝑡𝑡,       𝑛𝑛𝑡𝑡|𝑦𝑦𝑡𝑡−1~𝑃𝑃(𝜆𝜆𝑡𝑡)  (8) 

and 

𝜀𝜀𝑡𝑡,2 = E( 𝜀𝜀𝑡𝑡,2| 𝑦𝑦𝑡𝑡−1) = 0     (9) 

where 𝑦𝑦𝑡𝑡 stands for the dynamics of the return, 𝑁𝑁𝑡𝑡 is the jump component, 𝛾𝛾𝑡𝑡,𝑘𝑘 is the jump 

size, 𝜆𝜆𝑡𝑡 is the jump intensity, 𝜃𝜃 is the component of jump intensity, and 𝑛𝑛𝑡𝑡 denotes the 

number of jumps. The Poisson process 𝑁𝑁𝑡𝑡 with intensity parameter 𝜆𝜆 satisfies: 

P{One jump on d𝑡𝑡} = P{d𝑁𝑁𝑡𝑡 = 1} = 𝜆𝜆𝜆𝜆𝑡𝑡 + 𝑜𝑜(d𝑡𝑡)    (10) 

 is the jump component, 
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variance as well as the lagged square residuals. This model allows to evaluate different 

types of persistence in volatility (Bollerslev, 1986). The GARCH model is represented by: 

𝜎𝜎𝑡𝑡
2 = 𝜔𝜔 + ∑ 𝛼𝛼𝑖𝑖

𝑝𝑝
𝑖𝑖=1 𝜀𝜀𝑡𝑡−𝑖𝑖

2 + ∑ 𝛽𝛽𝑖𝑖
𝑞𝑞
𝑖𝑖=1 𝜎𝜎𝑡𝑡−𝑗𝑗

2        𝜔𝜔, 𝛼𝛼, 𝛽𝛽 > 0      (4) 

where 𝜎𝜎𝑡𝑡
2 is the conditional variance, 𝜔𝜔 and 𝛼𝛼 and 𝛽𝛽 are unknown parameters, 𝜀𝜀𝑡𝑡−𝑖𝑖

2  is the 

lag of the random deviation term, 𝜎𝜎𝑡𝑡−𝑗𝑗
2  is the lag of the variance, 𝛼𝛼 is the component of the 

influence of random deviation in the previous period, 𝛽𝛽 is the component of the variance in 

the previous period, and 𝛼𝛼 +  𝛽𝛽 is the level of persistence. Extending these approaches, the 

Jump-GARCH model is an alternative for modelling the dynamics of stock indexes when 

sudden and unexpected jumps occur (Chen, Lin and Lin, 2013). In this case, two stochastic 

innovations, 𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2, capture the dynamic of the return with no jump and jump, 

respectively. The innovations  𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2 are independent and satisfy:  

 𝜀𝜀𝑡𝑡 =  𝜀𝜀𝑡𝑡,1 +  𝜀𝜀𝑡𝑡,2     (5) 

The first innovation refers to market stability with no jumps, thus:  

𝜀𝜀𝑡𝑡,1 = 𝜎𝜎𝑡𝑡𝑢𝑢𝑡𝑡,         𝑢𝑢𝑡𝑡~𝑁𝑁(0,1)     (6) 

and  

E( 𝜀𝜀𝑡𝑡,1| 𝑦𝑦𝑡𝑡−1) = 0.     (7) 

The second innovation describes an unexpected jump when an unusual event occurs. The 

returns of the stock market are impacted by an unexpected event. The distribution of jumps 

follows a Poisson distribution and 𝜆𝜆 is the parameter of the jump intensity, hence: 

𝜀𝜀𝑡𝑡,2 = 𝑁𝑁𝑡𝑡 − E(𝑁𝑁𝑡𝑡|𝑦𝑦𝑡𝑡−1) = ∑ 𝛾𝛾𝑡𝑡,𝑘𝑘
𝑛𝑛𝑡𝑡
𝑘𝑘=1 − 𝜃𝜃𝜆𝜆𝑡𝑡,       𝑛𝑛𝑡𝑡|𝑦𝑦𝑡𝑡−1~𝑃𝑃(𝜆𝜆𝑡𝑡)  (8) 

and 

𝜀𝜀𝑡𝑡,2 = E( 𝜀𝜀𝑡𝑡,2| 𝑦𝑦𝑡𝑡−1) = 0     (9) 

where 𝑦𝑦𝑡𝑡 stands for the dynamics of the return, 𝑁𝑁𝑡𝑡 is the jump component, 𝛾𝛾𝑡𝑡,𝑘𝑘 is the jump 

size, 𝜆𝜆𝑡𝑡 is the jump intensity, 𝜃𝜃 is the component of jump intensity, and 𝑛𝑛𝑡𝑡 denotes the 

number of jumps. The Poisson process 𝑁𝑁𝑡𝑡 with intensity parameter 𝜆𝜆 satisfies: 

P{One jump on d𝑡𝑡} = P{d𝑁𝑁𝑡𝑡 = 1} = 𝜆𝜆𝜆𝜆𝑡𝑡 + 𝑜𝑜(d𝑡𝑡)    (10) 

 is the jump size, 
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variance as well as the lagged square residuals. This model allows to evaluate different 

types of persistence in volatility (Bollerslev, 1986). The GARCH model is represented by: 

𝜎𝜎𝑡𝑡
2 = 𝜔𝜔 + ∑ 𝛼𝛼𝑖𝑖

𝑝𝑝
𝑖𝑖=1 𝜀𝜀𝑡𝑡−𝑖𝑖

2 + ∑ 𝛽𝛽𝑖𝑖
𝑞𝑞
𝑖𝑖=1 𝜎𝜎𝑡𝑡−𝑗𝑗

2        𝜔𝜔, 𝛼𝛼, 𝛽𝛽 > 0      (4) 

where 𝜎𝜎𝑡𝑡
2 is the conditional variance, 𝜔𝜔 and 𝛼𝛼 and 𝛽𝛽 are unknown parameters, 𝜀𝜀𝑡𝑡−𝑖𝑖

2  is the 

lag of the random deviation term, 𝜎𝜎𝑡𝑡−𝑗𝑗
2  is the lag of the variance, 𝛼𝛼 is the component of the 

influence of random deviation in the previous period, 𝛽𝛽 is the component of the variance in 

the previous period, and 𝛼𝛼 +  𝛽𝛽 is the level of persistence. Extending these approaches, the 

Jump-GARCH model is an alternative for modelling the dynamics of stock indexes when 

sudden and unexpected jumps occur (Chen, Lin and Lin, 2013). In this case, two stochastic 

innovations, 𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2, capture the dynamic of the return with no jump and jump, 

respectively. The innovations  𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2 are independent and satisfy:  

 𝜀𝜀𝑡𝑡 =  𝜀𝜀𝑡𝑡,1 +  𝜀𝜀𝑡𝑡,2     (5) 

The first innovation refers to market stability with no jumps, thus:  

𝜀𝜀𝑡𝑡,1 = 𝜎𝜎𝑡𝑡𝑢𝑢𝑡𝑡,         𝑢𝑢𝑡𝑡~𝑁𝑁(0,1)     (6) 

and  

E( 𝜀𝜀𝑡𝑡,1| 𝑦𝑦𝑡𝑡−1) = 0.     (7) 

The second innovation describes an unexpected jump when an unusual event occurs. The 

returns of the stock market are impacted by an unexpected event. The distribution of jumps 

follows a Poisson distribution and 𝜆𝜆 is the parameter of the jump intensity, hence: 

𝜀𝜀𝑡𝑡,2 = 𝑁𝑁𝑡𝑡 − E(𝑁𝑁𝑡𝑡|𝑦𝑦𝑡𝑡−1) = ∑ 𝛾𝛾𝑡𝑡,𝑘𝑘
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𝑘𝑘=1 − 𝜃𝜃𝜆𝜆𝑡𝑡,       𝑛𝑛𝑡𝑡|𝑦𝑦𝑡𝑡−1~𝑃𝑃(𝜆𝜆𝑡𝑡)  (8) 

and 

𝜀𝜀𝑡𝑡,2 = E( 𝜀𝜀𝑡𝑡,2| 𝑦𝑦𝑡𝑡−1) = 0     (9) 

where 𝑦𝑦𝑡𝑡 stands for the dynamics of the return, 𝑁𝑁𝑡𝑡 is the jump component, 𝛾𝛾𝑡𝑡,𝑘𝑘 is the jump 

size, 𝜆𝜆𝑡𝑡 is the jump intensity, 𝜃𝜃 is the component of jump intensity, and 𝑛𝑛𝑡𝑡 denotes the 

number of jumps. The Poisson process 𝑁𝑁𝑡𝑡 with intensity parameter 𝜆𝜆 satisfies: 

P{One jump on d𝑡𝑡} = P{d𝑁𝑁𝑡𝑡 = 1} = 𝜆𝜆𝜆𝜆𝑡𝑡 + 𝑜𝑜(d𝑡𝑡)    (10) 
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variance as well as the lagged square residuals. This model allows to evaluate different 

types of persistence in volatility (Bollerslev, 1986). The GARCH model is represented by: 
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where 𝜎𝜎𝑡𝑡
2 is the conditional variance, 𝜔𝜔 and 𝛼𝛼 and 𝛽𝛽 are unknown parameters, 𝜀𝜀𝑡𝑡−𝑖𝑖
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lag of the random deviation term, 𝜎𝜎𝑡𝑡−𝑗𝑗
2  is the lag of the variance, 𝛼𝛼 is the component of the 

influence of random deviation in the previous period, 𝛽𝛽 is the component of the variance in 

the previous period, and 𝛼𝛼 +  𝛽𝛽 is the level of persistence. Extending these approaches, the 

Jump-GARCH model is an alternative for modelling the dynamics of stock indexes when 

sudden and unexpected jumps occur (Chen, Lin and Lin, 2013). In this case, two stochastic 

innovations, 𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2, capture the dynamic of the return with no jump and jump, 

respectively. The innovations  𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2 are independent and satisfy:  

 𝜀𝜀𝑡𝑡 =  𝜀𝜀𝑡𝑡,1 +  𝜀𝜀𝑡𝑡,2     (5) 

The first innovation refers to market stability with no jumps, thus:  

𝜀𝜀𝑡𝑡,1 = 𝜎𝜎𝑡𝑡𝑢𝑢𝑡𝑡,         𝑢𝑢𝑡𝑡~𝑁𝑁(0,1)     (6) 

and  

E( 𝜀𝜀𝑡𝑡,1| 𝑦𝑦𝑡𝑡−1) = 0.     (7) 

The second innovation describes an unexpected jump when an unusual event occurs. The 

returns of the stock market are impacted by an unexpected event. The distribution of jumps 

follows a Poisson distribution and 𝜆𝜆 is the parameter of the jump intensity, hence: 

𝜀𝜀𝑡𝑡,2 = 𝑁𝑁𝑡𝑡 − E(𝑁𝑁𝑡𝑡|𝑦𝑦𝑡𝑡−1) = ∑ 𝛾𝛾𝑡𝑡,𝑘𝑘
𝑛𝑛𝑡𝑡
𝑘𝑘=1 − 𝜃𝜃𝜆𝜆𝑡𝑡,       𝑛𝑛𝑡𝑡|𝑦𝑦𝑡𝑡−1~𝑃𝑃(𝜆𝜆𝑡𝑡)  (8) 

and 

𝜀𝜀𝑡𝑡,2 = E( 𝜀𝜀𝑡𝑡,2| 𝑦𝑦𝑡𝑡−1) = 0     (9) 

where 𝑦𝑦𝑡𝑡 stands for the dynamics of the return, 𝑁𝑁𝑡𝑡 is the jump component, 𝛾𝛾𝑡𝑡,𝑘𝑘 is the jump 

size, 𝜆𝜆𝑡𝑡 is the jump intensity, 𝜃𝜃 is the component of jump intensity, and 𝑛𝑛𝑡𝑡 denotes the 

number of jumps. The Poisson process 𝑁𝑁𝑡𝑡 with intensity parameter 𝜆𝜆 satisfies: 

P{One jump on d𝑡𝑡} = P{d𝑁𝑁𝑡𝑡 = 1} = 𝜆𝜆𝜆𝜆𝑡𝑡 + 𝑜𝑜(d𝑡𝑡)    (10) 
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variance as well as the lagged square residuals. This model allows to evaluate different 

types of persistence in volatility (Bollerslev, 1986). The GARCH model is represented by: 

𝜎𝜎𝑡𝑡
2 = 𝜔𝜔 + ∑ 𝛼𝛼𝑖𝑖

𝑝𝑝
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where 𝜎𝜎𝑡𝑡
2 is the conditional variance, 𝜔𝜔 and 𝛼𝛼 and 𝛽𝛽 are unknown parameters, 𝜀𝜀𝑡𝑡−𝑖𝑖

2  is the 

lag of the random deviation term, 𝜎𝜎𝑡𝑡−𝑗𝑗
2  is the lag of the variance, 𝛼𝛼 is the component of the 

influence of random deviation in the previous period, 𝛽𝛽 is the component of the variance in 

the previous period, and 𝛼𝛼 +  𝛽𝛽 is the level of persistence. Extending these approaches, the 

Jump-GARCH model is an alternative for modelling the dynamics of stock indexes when 

sudden and unexpected jumps occur (Chen, Lin and Lin, 2013). In this case, two stochastic 

innovations, 𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2, capture the dynamic of the return with no jump and jump, 

respectively. The innovations  𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2 are independent and satisfy:  

 𝜀𝜀𝑡𝑡 =  𝜀𝜀𝑡𝑡,1 +  𝜀𝜀𝑡𝑡,2     (5) 

The first innovation refers to market stability with no jumps, thus:  

𝜀𝜀𝑡𝑡,1 = 𝜎𝜎𝑡𝑡𝑢𝑢𝑡𝑡,         𝑢𝑢𝑡𝑡~𝑁𝑁(0,1)     (6) 

and  

E( 𝜀𝜀𝑡𝑡,1| 𝑦𝑦𝑡𝑡−1) = 0.     (7) 

The second innovation describes an unexpected jump when an unusual event occurs. The 

returns of the stock market are impacted by an unexpected event. The distribution of jumps 

follows a Poisson distribution and 𝜆𝜆 is the parameter of the jump intensity, hence: 

𝜀𝜀𝑡𝑡,2 = 𝑁𝑁𝑡𝑡 − E(𝑁𝑁𝑡𝑡|𝑦𝑦𝑡𝑡−1) = ∑ 𝛾𝛾𝑡𝑡,𝑘𝑘
𝑛𝑛𝑡𝑡
𝑘𝑘=1 − 𝜃𝜃𝜆𝜆𝑡𝑡,       𝑛𝑛𝑡𝑡|𝑦𝑦𝑡𝑡−1~𝑃𝑃(𝜆𝜆𝑡𝑡)  (8) 

and 

𝜀𝜀𝑡𝑡,2 = E( 𝜀𝜀𝑡𝑡,2| 𝑦𝑦𝑡𝑡−1) = 0     (9) 

where 𝑦𝑦𝑡𝑡 stands for the dynamics of the return, 𝑁𝑁𝑡𝑡 is the jump component, 𝛾𝛾𝑡𝑡,𝑘𝑘 is the jump 

size, 𝜆𝜆𝑡𝑡 is the jump intensity, 𝜃𝜃 is the component of jump intensity, and 𝑛𝑛𝑡𝑡 denotes the 

number of jumps. The Poisson process 𝑁𝑁𝑡𝑡 with intensity parameter 𝜆𝜆 satisfies: 

P{One jump on d𝑡𝑡} = P{d𝑁𝑁𝑡𝑡 = 1} = 𝜆𝜆𝜆𝜆𝑡𝑡 + 𝑜𝑜(d𝑡𝑡)    (10) 
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variance as well as the lagged square residuals. This model allows to evaluate different 

types of persistence in volatility (Bollerslev, 1986). The GARCH model is represented by: 

𝜎𝜎𝑡𝑡
2 = 𝜔𝜔 + ∑ 𝛼𝛼𝑖𝑖

𝑝𝑝
𝑖𝑖=1 𝜀𝜀𝑡𝑡−𝑖𝑖

2 + ∑ 𝛽𝛽𝑖𝑖
𝑞𝑞
𝑖𝑖=1 𝜎𝜎𝑡𝑡−𝑗𝑗

2        𝜔𝜔, 𝛼𝛼, 𝛽𝛽 > 0      (4) 

where 𝜎𝜎𝑡𝑡
2 is the conditional variance, 𝜔𝜔 and 𝛼𝛼 and 𝛽𝛽 are unknown parameters, 𝜀𝜀𝑡𝑡−𝑖𝑖

2  is the 

lag of the random deviation term, 𝜎𝜎𝑡𝑡−𝑗𝑗
2  is the lag of the variance, 𝛼𝛼 is the component of the 

influence of random deviation in the previous period, 𝛽𝛽 is the component of the variance in 

the previous period, and 𝛼𝛼 +  𝛽𝛽 is the level of persistence. Extending these approaches, the 

Jump-GARCH model is an alternative for modelling the dynamics of stock indexes when 

sudden and unexpected jumps occur (Chen, Lin and Lin, 2013). In this case, two stochastic 

innovations, 𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2, capture the dynamic of the return with no jump and jump, 

respectively. The innovations  𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2 are independent and satisfy:  

 𝜀𝜀𝑡𝑡 =  𝜀𝜀𝑡𝑡,1 +  𝜀𝜀𝑡𝑡,2     (5) 

The first innovation refers to market stability with no jumps, thus:  

𝜀𝜀𝑡𝑡,1 = 𝜎𝜎𝑡𝑡𝑢𝑢𝑡𝑡,         𝑢𝑢𝑡𝑡~𝑁𝑁(0,1)     (6) 

and  

E( 𝜀𝜀𝑡𝑡,1| 𝑦𝑦𝑡𝑡−1) = 0.     (7) 

The second innovation describes an unexpected jump when an unusual event occurs. The 

returns of the stock market are impacted by an unexpected event. The distribution of jumps 

follows a Poisson distribution and 𝜆𝜆 is the parameter of the jump intensity, hence: 

𝜀𝜀𝑡𝑡,2 = 𝑁𝑁𝑡𝑡 − E(𝑁𝑁𝑡𝑡|𝑦𝑦𝑡𝑡−1) = ∑ 𝛾𝛾𝑡𝑡,𝑘𝑘
𝑛𝑛𝑡𝑡
𝑘𝑘=1 − 𝜃𝜃𝜆𝜆𝑡𝑡,       𝑛𝑛𝑡𝑡|𝑦𝑦𝑡𝑡−1~𝑃𝑃(𝜆𝜆𝑡𝑡)  (8) 

and 

𝜀𝜀𝑡𝑡,2 = E( 𝜀𝜀𝑡𝑡,2| 𝑦𝑦𝑡𝑡−1) = 0     (9) 

where 𝑦𝑦𝑡𝑡 stands for the dynamics of the return, 𝑁𝑁𝑡𝑡 is the jump component, 𝛾𝛾𝑡𝑡,𝑘𝑘 is the jump 

size, 𝜆𝜆𝑡𝑡 is the jump intensity, 𝜃𝜃 is the component of jump intensity, and 𝑛𝑛𝑡𝑡 denotes the 

number of jumps. The Poisson process 𝑁𝑁𝑡𝑡 with intensity parameter 𝜆𝜆 satisfies: 

P{One jump on d𝑡𝑡} = P{d𝑁𝑁𝑡𝑡 = 1} = 𝜆𝜆𝜆𝜆𝑡𝑡 + 𝑜𝑜(d𝑡𝑡)    (10) 
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variance as well as the lagged square residuals. This model allows to evaluate different 

types of persistence in volatility (Bollerslev, 1986). The GARCH model is represented by: 

𝜎𝜎𝑡𝑡
2 = 𝜔𝜔 + ∑ 𝛼𝛼𝑖𝑖

𝑝𝑝
𝑖𝑖=1 𝜀𝜀𝑡𝑡−𝑖𝑖

2 + ∑ 𝛽𝛽𝑖𝑖
𝑞𝑞
𝑖𝑖=1 𝜎𝜎𝑡𝑡−𝑗𝑗

2        𝜔𝜔, 𝛼𝛼, 𝛽𝛽 > 0      (4) 

where 𝜎𝜎𝑡𝑡
2 is the conditional variance, 𝜔𝜔 and 𝛼𝛼 and 𝛽𝛽 are unknown parameters, 𝜀𝜀𝑡𝑡−𝑖𝑖

2  is the 

lag of the random deviation term, 𝜎𝜎𝑡𝑡−𝑗𝑗
2  is the lag of the variance, 𝛼𝛼 is the component of the 

influence of random deviation in the previous period, 𝛽𝛽 is the component of the variance in 

the previous period, and 𝛼𝛼 +  𝛽𝛽 is the level of persistence. Extending these approaches, the 

Jump-GARCH model is an alternative for modelling the dynamics of stock indexes when 

sudden and unexpected jumps occur (Chen, Lin and Lin, 2013). In this case, two stochastic 

innovations, 𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2, capture the dynamic of the return with no jump and jump, 

respectively. The innovations  𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2 are independent and satisfy:  

 𝜀𝜀𝑡𝑡 =  𝜀𝜀𝑡𝑡,1 +  𝜀𝜀𝑡𝑡,2     (5) 

The first innovation refers to market stability with no jumps, thus:  

𝜀𝜀𝑡𝑡,1 = 𝜎𝜎𝑡𝑡𝑢𝑢𝑡𝑡,         𝑢𝑢𝑡𝑡~𝑁𝑁(0,1)     (6) 

and  

E( 𝜀𝜀𝑡𝑡,1| 𝑦𝑦𝑡𝑡−1) = 0.     (7) 

The second innovation describes an unexpected jump when an unusual event occurs. The 

returns of the stock market are impacted by an unexpected event. The distribution of jumps 

follows a Poisson distribution and 𝜆𝜆 is the parameter of the jump intensity, hence: 

𝜀𝜀𝑡𝑡,2 = 𝑁𝑁𝑡𝑡 − E(𝑁𝑁𝑡𝑡|𝑦𝑦𝑡𝑡−1) = ∑ 𝛾𝛾𝑡𝑡,𝑘𝑘
𝑛𝑛𝑡𝑡
𝑘𝑘=1 − 𝜃𝜃𝜆𝜆𝑡𝑡,       𝑛𝑛𝑡𝑡|𝑦𝑦𝑡𝑡−1~𝑃𝑃(𝜆𝜆𝑡𝑡)  (8) 

and 

𝜀𝜀𝑡𝑡,2 = E( 𝜀𝜀𝑡𝑡,2| 𝑦𝑦𝑡𝑡−1) = 0     (9) 

where 𝑦𝑦𝑡𝑡 stands for the dynamics of the return, 𝑁𝑁𝑡𝑡 is the jump component, 𝛾𝛾𝑡𝑡,𝑘𝑘 is the jump 

size, 𝜆𝜆𝑡𝑡 is the jump intensity, 𝜃𝜃 is the component of jump intensity, and 𝑛𝑛𝑡𝑡 denotes the 

number of jumps. The Poisson process 𝑁𝑁𝑡𝑡 with intensity parameter 𝜆𝜆 satisfies: 

P{One jump on d𝑡𝑡} = P{d𝑁𝑁𝑡𝑡 = 1} = 𝜆𝜆𝜆𝜆𝑡𝑡 + 𝑜𝑜(d𝑡𝑡)    (10) 

 satisfies:
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variance as well as the lagged square residuals. This model allows to evaluate different 

types of persistence in volatility (Bollerslev, 1986). The GARCH model is represented by: 

𝜎𝜎𝑡𝑡
2 = 𝜔𝜔 + ∑ 𝛼𝛼𝑖𝑖

𝑝𝑝
𝑖𝑖=1 𝜀𝜀𝑡𝑡−𝑖𝑖

2 + ∑ 𝛽𝛽𝑖𝑖
𝑞𝑞
𝑖𝑖=1 𝜎𝜎𝑡𝑡−𝑗𝑗

2        𝜔𝜔, 𝛼𝛼, 𝛽𝛽 > 0      (4) 

where 𝜎𝜎𝑡𝑡
2 is the conditional variance, 𝜔𝜔 and 𝛼𝛼 and 𝛽𝛽 are unknown parameters, 𝜀𝜀𝑡𝑡−𝑖𝑖

2  is the 

lag of the random deviation term, 𝜎𝜎𝑡𝑡−𝑗𝑗
2  is the lag of the variance, 𝛼𝛼 is the component of the 

influence of random deviation in the previous period, 𝛽𝛽 is the component of the variance in 

the previous period, and 𝛼𝛼 +  𝛽𝛽 is the level of persistence. Extending these approaches, the 

Jump-GARCH model is an alternative for modelling the dynamics of stock indexes when 

sudden and unexpected jumps occur (Chen, Lin and Lin, 2013). In this case, two stochastic 

innovations, 𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2, capture the dynamic of the return with no jump and jump, 

respectively. The innovations  𝜀𝜀𝑡𝑡,1 and 𝜀𝜀𝑡𝑡,2 are independent and satisfy:  

 𝜀𝜀𝑡𝑡 =  𝜀𝜀𝑡𝑡,1 +  𝜀𝜀𝑡𝑡,2     (5) 

The first innovation refers to market stability with no jumps, thus:  

𝜀𝜀𝑡𝑡,1 = 𝜎𝜎𝑡𝑡𝑢𝑢𝑡𝑡,         𝑢𝑢𝑡𝑡~𝑁𝑁(0,1)     (6) 

and  

E( 𝜀𝜀𝑡𝑡,1| 𝑦𝑦𝑡𝑡−1) = 0.     (7) 

The second innovation describes an unexpected jump when an unusual event occurs. The 

returns of the stock market are impacted by an unexpected event. The distribution of jumps 

follows a Poisson distribution and 𝜆𝜆 is the parameter of the jump intensity, hence: 

𝜀𝜀𝑡𝑡,2 = 𝑁𝑁𝑡𝑡 − E(𝑁𝑁𝑡𝑡|𝑦𝑦𝑡𝑡−1) = ∑ 𝛾𝛾𝑡𝑡,𝑘𝑘
𝑛𝑛𝑡𝑡
𝑘𝑘=1 − 𝜃𝜃𝜆𝜆𝑡𝑡,       𝑛𝑛𝑡𝑡|𝑦𝑦𝑡𝑡−1~𝑃𝑃(𝜆𝜆𝑡𝑡)  (8) 

and 

𝜀𝜀𝑡𝑡,2 = E( 𝜀𝜀𝑡𝑡,2| 𝑦𝑦𝑡𝑡−1) = 0     (9) 

where 𝑦𝑦𝑡𝑡 stands for the dynamics of the return, 𝑁𝑁𝑡𝑡 is the jump component, 𝛾𝛾𝑡𝑡,𝑘𝑘 is the jump 

size, 𝜆𝜆𝑡𝑡 is the jump intensity, 𝜃𝜃 is the component of jump intensity, and 𝑛𝑛𝑡𝑡 denotes the 

number of jumps. The Poisson process 𝑁𝑁𝑡𝑡 with intensity parameter 𝜆𝜆 satisfies: 

P{One jump on d𝑡𝑡} = P{d𝑁𝑁𝑡𝑡 = 1} = 𝜆𝜆𝜆𝜆𝑡𝑡 + 𝑜𝑜(d𝑡𝑡)    (10)  (10)
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P{None jump on 𝑑𝑑𝑑𝑑} = P{d𝑁𝑁𝑑𝑑 = 0} = 1 − 𝜆𝜆d𝑑𝑑 + 𝑜𝑜(d𝑑𝑑).   (11) 

Hence, 

P{More that one jump on d𝑑𝑑} = P{d𝑁𝑁𝑑𝑑 ≥ 1} = 𝑜𝑜(d𝑑𝑑).   (12) 

Then, 

E[d𝑁𝑁𝑑𝑑] = Var[d𝑁𝑁𝑑𝑑] =  𝜆𝜆d𝑑𝑑,    (13) 

Cov(𝜎𝜎𝑑𝑑𝑢𝑢𝑑𝑑, 𝑁𝑁𝑑𝑑) = 0    (14) 

 

2. Data Description 
This section, aims to find out how well the proposed model captures and describes the 

dynamics of the stock index returns under study. The data for the US (S&P 500), Eurozone 

(EuroStoxx50), United of Kingdom (FTSE100), Japan (Nikkei), China (Hang Seng), 

México (IPC) and Brazil (Bovespa) were obtained from Bloomberg and includes daily 

returns of each stock index. The USA is considered as a benchmark since it is the world´s 

largest economy and it has the biggest financial market.5 Hong Kong is the most important 

financial center in Asia; Japan is a highly developed economy in Asia and it has the largest 

electronic goods industry; Mexico and Brazil exhibit the best macroeconomic indicators of 

Latin America. 

The sample period of our analysis begins in January 1994 and ends in December 

2017 (5980 daily returns for each stock index). The purpose of this study is to capture in 

our extension the dynamics of stock market indexes before, during and after crisis periods. 

The most relevant extreme events are the Asian financial crisis, the bubble dot com in 

2001, the subprime mortgage recession in 2008, the Eurozone debt crisis in 2011, the 

Brexit in June 2016, and the power takeover of president Trump in December 2016. The 

idiosyncratic volatility is represented by the standard deviation. The market volatility is 

calculated through the VIX index, which is a measure of the expected volatility of the US 

stock market during 30 days, calculated from real-time mid quote prices of S&P500 call 

and put options index (CBOE). Finally, the volatility of volatility is the square return of 

measure by the VIX index. The parameters for Markov regime switching were estimated 
                                                           
5 Investors of financial markets take often decisions on basis of Eurozone and UK economic data. 
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financial center in Asia; Japan is a highly developed economy in Asia and it 
has the largest electronic goods industry; Mexico and Brazil exhibit the best 
macroeconomic indicators of Latin America.

The analysis sample period begins in January 1994 and ends in Decem-
ber 2017 (5980 daily returns for each stock index). The purpose of this study 
is to capture in the extension proposed the dynamics of stock market index-
es before, during and after crisis periods. The most relevant extreme events 
are the Asian financial crisis, the bubble dot com in 2001, the subprime 
mortgage recession in 2008, the Eurozone debt crisis in 2011, the Brexit in 
June 2016, and the power takeover of president Trump in December 2016. 
The idiosyncratic volatility is represented by the standard deviation. The 
market volatility is calculated through the VIX index, which is a measure 
of the expected volatility of the US stock market during 30 days, calcula-
ted from real-time mid quote prices of S&P500 call and put options index 
(CBOE). Finally, the volatility of volatility is the square return of measure by 
the VIX index. The parameters for Markov regime switching were estimated 
using E-views software, Jump-GARCH with Rats software and the Hurst coe-
fficient was calculated using the Pracma package programmed in R. 

3. Empirical analysis 

The results of the Markov regime-switching models describing the degree 
of volatility of the previous period of the returns of S&P500, Eurostoxx50, 
FTSE100, Nikkei, Hang Seng, IPC and Bovespa indexes are shown in Table 1.

Table 1. Transition probabilities of the Markov Regime-Switching model

Source: Prepared by authors with Bloomberg data and E-views software.

 

 Probabilities S&P500 EuroStoxx50 FTSE100 IPC Bovespa Nikkei Hang Seng

 p11 0.41424 0.52744 0.54349 0.58354 0.56479 0.46037 0.48052

 p12 0.58576 0.47255 0.45650 0.41646 0.43521 0.53963 0.51949

 p21 0.29279 0.40675 0.50486 0.38694 0.44869 0.54721 0.37474

 p22 0.70721 0.59324 0.49513 0.61306 0.55131 0.45279 0.62526
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Figure 2. Returns of EuroStoxx50 (1994-2017)

Source: Prepared by authors with Bloomberg data and E-Views.

Figure 1. Returns of S&P 500 (1994-2017)

 Source: Prepared by authors with Bloomberg data and E-Views.
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Mexican index had the highest jump at December 1997 (Figure 6) and the highest jumps 

for Brazil are in the 2008 recession and in the Samba crisis (Figure 7). 
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Table 1 shows that the S&P500 has 70% of probability to stay in high 
volatility from one period to another, followed by the Hang Seng with 62%; 
while, IPC, Bovespa and FTSE100 have a bigger probability to stay in low 
volatility than the others. Indexes FTSE100 and Nikkei are more probable 
to change from high to low volatility. The S&P500 has 58% of probability to 
transit to high volatility, and just a 29% of probability that this index will 
changed from high to low volatility. Figures 1-7 show the returns of S&P500, 
Eurostoxx50, FTSE100, Nikkei, Hang Seng, IPC and Bovespa indexes from 
1994 to 2017 (the x-axis measures the number of days) these have higher 
jumps on the most relevant economic event as bubbles, crises and politiques 
decisions around the world; see Figures 1 to 7.
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Figure 3. Returns of FTSE100 (1994-2017)

Source: Prepared by authors with Bloomberg data and E-Views.

Figure 4. Returns of Nikkei (1994-2017) 

 Source: Prepared by authors with Bloomberg data and E-Views.

Figure 5. Returns of Hang Seng (1994-2017)

Source: Prepared by authors with Bloomberg data and E-Views.
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The highest jump for S&P 500 is at the Subprime Mortgage Recession 
(Figure 1); Hang Seng shows a huge jump at Asiatic Crisis (Figure 5); For 
Eurostoxx50, the highest jumps are at subprime mortgage recession, Euro-
zone debt crisis and Brexit (Figure 2); Mexican index had the highest jump at 
December 1997 (Figure 6) and the highest jumps for Brazil are in the 2008 
recession and in the Samba crisis (Figure 7).

Figure 6. Returns of IPC (1994-2017)6

 Source: Prepared by authors with Bloomberg data and E-Views.

Figure 7. Returns of Bovespa (1994-2017)7

Source: Prepared by authors with Bloomberg data and E-Views.
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Figure 7. Returns of Bovespa (1994-2017)7   

 
                        Source: Prepared by authors with Bloomberg data and E-Views 

 

 

The following Table shows the summary of economic events that have had an 

impact on the index returns under study. 

 

Table 2. Summary of Economic and Geopolitical Shocks (1994-2017) 

 

Event S&P 500 EuroStoxx50 FTSE100 Nikkei 

Hang 

Seng IPC Bovespa 

Asian Financial 

Crisis 

End of 1997 

and 1998 

End of 1997 

and 1998 
No impact 

 

End of 

1997 and 

1998 

End of 

1997 and 

1998 

End of 

1997 
End of 1997 

Dot Com 

Bubble 

Middle of 

2000 and 

2001 

2001 and 

beginning of 

2002 

Slightly 

impact  

From 

2000 to 

2002 

First 

semester   

of 2000 

Middle of 

2000 and 

2001 

End of 2001 

Subprime 

Mortgage 

Recession 

End of 2008 

and 

beginning 

of 2009 

End of 2008 

and beginning 

of 2009 

Second 

half of 

2008 

Second 

half of 

2008 

From 

2007 to 

2009 

End of 

2008 and 

beginning 

of 2009 

End of 2008 

and 

beginning 

of 2009 

Eurozone Debt 

Crisis 

Slightly 

impact       

2010 and 

2011 

Slightly 

impact  

Beginning 

of 2011 

Beginning 

of 2011 

Slightly 

impact in        

Slightly 

impact in        

                                                           
7 The Brazilian index (Bovespa) was impacted by effect Samba Crisis the samba effect crisis at the end of 
1998. 

Prob High Volatility 55.13% 

6 The Mexican Index (IPC) showed an important jump at the beginning of 1995 due 
to a currency crisis that started in this country, known as the Tequila Effect.

7 The Brazilian Index (Bovespa) was impacted by the Samba Effect crisis at the end of 
1998.
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Table 2 shows the summary of economic events that have had an impact 
on the index returns under study.

In order to estimate the parameters of the Jump-GARCH model, the log 
likelihood was computed, the log likelihood of a GARCH model on the resid-
uals was evaluated, jumps were examined, and the accumulated first and 
second moments were defined. Table 3 shows the estimates of the parame-
ters of the Jump-GARCH model by using maximum likelihood for the returns 
of the stock indexes S&P500, EuroStoxx50, FTSE100, Nikkei, Hang Seng, IPC 
and Bovespa. The calibration of parameters were carried out as follows: 
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the random deviation in the previous period and its average is close to 0.10; 
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Conclusions

For many decades, researchers have worked on describing the financial 
market behaviour since this is the thermometer of the economy. Relevant 
economics and political events (crisis) have occurred since 1929. Nowadays, 
the evolution of the stock market has posed new challenges such as the 
understanding of the behaviour of volatility of volatility and volatility 
clusters, thus it is required to apply new models that include sophisticated 
tools such as fractional Brownian motion modulated by Markov chains, in 
order to explain the market behaviour. 

Until now, several researchers have worked on finding better models 
to explain the behaviour of stock returns. A substantial proportion of the 
variation of stock returns remains unexplained; this lack of knowledge ge-
nerates uncertainty and instability, and therefore affects, not only financial 
markets but the economy as a whole. This paper seeks to contribute to re-
duce this gap by constructing a model that explains the behaviour of stock 
indexes volatility based on the Durham and Park’s (2012) approach. The 
proposed extension describes the stochastic dynamics of the stock indexes 
of several world’s main economies (US, Eurozone, UK and Japan) and some 
of the main emerging markets (China, Brazil, and Mexico) during 1994-2017. 
The outcome supports the hypothesis of long-term memory of all stock in-
dexes, which means that the increments are positively correlated, and the 
series have long-term memory.

After calibrating the extension, it can be noticed that the stock indexes 
that have a probability over 60% to remain in high volatility are S&P 500 
with 70%, and Hang Seng with 62%; while, IPC, Bovespa and FTSE100 have 

Table 4. Hurst Coefficient

Source: Prepared by authors with R programming.

 
 Hurst S&P 500 EuroStoxx50 FTSE100 IPC Bovespa Nikkei Hang Seng 
 Coefficient
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a high probability to stay in low volatility, 58%, 56% and 54%, respectively. 
The percentage of changes from high to low volatility from one period to 
another is just 29% for S&P 500. Nikkei has the greatest probability to move 
from high to low volatility but it will not remain in low volatility for long 
time. S&P500 and Hang Seng were found to be more volatile than other in-
dexes. Moreover, from the GARCH estimation is observed that Bovespa and 
FTSE100 have the highest lag random deviation (0.1172); Hang Seng has the 
highest lag variance, 0.9213; Bovespa has the largest jump in size and inten-
sity; and S&P has the greatest amount of jumps in the period studied. 
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