
4 Volumen 10, número 1, enero - junio, 2020 pp. 9-36

Estocástica:
FINANZAS Y RIESGO

 Desempeño de ocho de las criptomonedas  
de mayor capitalización de mercado

  Francisco López-Herrera 
 Luis Guadalupe Macías Trejo 
 Oscar Valdemar de la Torre Torres 103

	ISSN 2007-5383 versión digital,  ISSN 2007-5375 versión impresa	 221

Chicago and Mexico Futures Markets Asymmetrics and HedgingURL: estocastica.azc.uam.mx
Volumen 10, número 2, julio-diciembre 2020, pp. 221-251

Chicago and Mexico Futures Markets 
Asymmetries and Hedging

Asimetrías y cobertura en los mercados de 
futuros de México y Chicago

Beatriz Valadez Bautista*

Edgar Ortiz**
(Fecha de recepción: 7 de agosto de 2020. Fecha de aceptación: 28 de septiembre de2020)

*	 Facultad de Contaduría y Administración 
Universidad Nacional Autónoma de México 
betyvaladez.bv@gmail.com 
betyvaladez@comunidad.unam.mx. ORCID: 0000-0002-2184-2667

**	 Facultad de Ciencias Políticas y Sociales 
Universidad Nacional Autónoma de México 
edgaro@unam.mx. ORCID: 0000-0001-5486-2982

Abstract

This work investigates the hedging performance of futures contracts in two asymmetric 
markets, peso/dollar traded at the Mexican derivatives market (MexDer); and dollar/
peso traded in the Chicago Mercantile Exchange (CME). Value at Risk and Expected 
Shortfall enhanced by GARCH (1,1) modeling was applied. The left and right tails of 
the futures return series are examined, for both short and long positions. The period 
analyzed comprises from October 2016 to June 2017, partitioned in three subperiods; 
the results obtained for each market are compared, and finally their statistical validity 
is tested applying Kupiec backtesting. Overall, hedging in the CME is more effective, 
albeit the MexDer outperforms that market several times. However, all metrics (with 
and without GARCH modeling added) show important weakness below the 99 percent 
confidence level.
JEL Classifications: C58, F1, F39, G15, M21, 
Keywords: Value at Risk, Expected Shortfall, GARCH, Peso futures hedging 
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Introducción

El impacto de las reclamaciones en una compañía de seguros puede des-
equilibrar la estabilidad de la misma. Por esta razón, es fundamental una 

adecuada administración, evaluación y previsión de la siniestralidad dentro 
de un horizonte de tiempo finito; particularmente considerando las condi-
ciones económicas y sociales de los asegurados, para garantizar un correcto 
nivel de reservas y cálculo de primas (cumpliéndose el principio de ganancia 
neta dentro del seguro).1 

El modelo colectivo de riesgo, describe el agregado de reclamaciones 
como un fenómeno adverso para el patrimonio de una aseguradora, que pue-
de presentarse durante un período de tiempo [0,T]. Uno de los supuestos, 
que generalmente se considera por comodidad, es que existe independencia 

entre el número de reclamaciones y el monto de las mismas, lo que contrapone lo 
estipulado por la teoría del modelo colectivo de riesgo. 
Clasificación JEL: G22, D81, C15.
Palabras clave: modelo colectivo de riesgo, seguros, cópula, reclamaciones depen-
dientes.

AbstRAct

The collective risk model is defined in the actuarial literature as an important risk 
distribution analysis tool for insurance companies. Actuarial textbooks assume an 
independent behavior between the number of claims and their amount. The main 
objective of this paper is to show that under certain circumstances evidence of 
dependency between the variables studied may be found. To ascertain this objective 
copula functions, such as Elliptical and Archimedeans, were used. A Complaints Portfolio 
on the damage section of Afirme Seguros Company from Mexico City, Mexico, was 
analyzed. The empirical evidence found showed the existence of dependency between 
the number of claims and their amount, this finding contradicts what is stated in the 
Collective Risk Model Theory.
JEL Classification: G22, D81, C15.
Keywords: Collective Risk Model, Insurances, Copula, Dependent Claims.

1 La esperanza de pérdida para la compañía debe ser menor a lo que se cobra en 
primas (Klugman, 2012). 
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Introduction

Globalization has led during the last five decades to a significant growth 
in trade, real and portfolio investments which in turn have been 

accompanied with a greater use of currency transactions, albeit dominated 
by the dollar vis-a vis other national currencies. Growth, however, has been 
characterized by volatility of exchange rates. To prevent negative results 
in their operations, corporations, policy makers, investors and traders 
hedge their holdings, among other alternatives, with future contracts. 
Thus, currency hedge with future contracts has been reported widely in the 
financial literature.1

Resumen

Este trabajo investiga el desempeño de cobertura de contratos de futuros en dos 
mercados asimétricos, peso/dólar negociado en el mercado mexicano de derivados 
(MexDer); y dólar/peso negociado en el Chicago Mercantile Exchange (CME). 
Aplicamos valor en riesgo y déficit esperado mejorado por el modelado GARCH (1,1). 
Se examinan las colas izquierda y derecha de las series de rendimientos de futuros, 
tanto para posiciones cortas como largas. El período analizado comprende de octubre 
de 2016 a junio de 2017, dividido en tres subperíodos; los resultados obtenidos para 
cada mercado se comparan, y finalmente su validez estadística se prueba aplicando 
backtesting Kupiec. En general, la cobertura en el CME es más eficaz, aunque el 
MexDer supera a ese mercado varias veces. Sin embargo, todas las métricas (con y 
sin el modelado GARCH agregado) muestran una debilidad importante por debajo 
del nivel de confianza del 99 por ciento.
Clasificación JEL: C58, F1, F39, G15, M21, 
Palabras clave: Value at Risk, Expected Shortfall, GARCH, Peso futures hedging 
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1	 Hedging (also known as covering) refers to any strategy employed to reduce the 
risk of undesirable price movements on holdings of any asset; the goal is securing 
a predetermined price (for the covered asset). Derivatives like futures, options and 
swaps are available for this purpose. Currency Futures examined in this paper are 
contracts to buy/sell a given currency for a specific price at a predetermined period 
in the future.
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Various techniques have been used in previous research, attempting 
to estimate the efficiency of futures markets. A great deal of the literature 
has dealt with the optimum hedge ratio. Another strand of research has 
concentrated in estimating tails’ risk attempting mainly to predict potential 
losses. Value at Risk analysis (VaR) models have been used for this purpose.

However, few studies compare the efficiency of converse currency 
future contracts offered by two different markets. This work examines the 
performance of peso/dollar contracts offered by the Mexican Derivatives 
Market (MexDer) vs. the dollar/peso futures offered by the Chicago 
Mercantile Exchange (CME), which, while reflecting symmetries between 
the U.S. and Mexican economies, also present important asymmetries in size, 
volume of trade, and maturity. Value at Risk (VaR) and Expected Shortfall 
(ES) methodologies were used, enhancing them by incorporating GARCH 
modeling. Moreover, these methodologies integrate the trading position, 
distinguishing between downside and upward risk. 

Concretely, the objective of this paper is to analyze, contrast and 
determine which of those metrics, applied to both markets, yield better 
and statistically robust estimates about the currency coverage with the 
futures pinpointed above. The hypothesis is that it is possible to obtain 
greater accuracy estimating potential losses by applying ES under a GARCH 
approach, with different levels of confidence (90%, 95%, 97.5% and 99%). 
The hypothesis also includes that hedging in the CME leads to a better 
hedging results than those obtained in the MexDer. The period of analysis 
considers from October 2016 to June 2017. 

Historically, México has been associated with Canada and the Unit-
ed States conforming the North American Free Trade Agreement, NAFTA 
(1994-2020) and has now entered a renewed regional integration agree-
ment again involving the United States, Mexico and Canada, (UMSCA), start-
ing on July 1, 2020. However, it is important to underlie the fact that Mexico’s 
economy is less developed than its counterparts in the agreement, revealing 
severe economic and institutional differences among these countries.

Table 1 summarizes existing asymmetries in economic level between 
Mexico and the United States and the relative importance of the stock 
market in both countries. The Mexican economy amounts to only 5.53% 
of the U.S. gross national product; similarly, Mexico’s GDP/capita amounts 
to US$10,292 thousand dollars which is 19.3% of the U.S. GDP per capita 
(US$53,336 thousand dollars).
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More striking is the difference regarding stock market capitalization. 
Total stock market capitalization in the U.S.2 in 2017 reached $31,774.585 
billion dollars, that is 163.01% in relation to GDP; in the case of Mexico total 
market capitalization during the same year was only $417.021 billion dollars, 
1.31% in relation to the U.S. market size, and only 36.24% in relation to its 
own GDP. According to these indicators, financial deepening is rather low 
in Mexico which suggests a restricted performance of its financial markets, 
like in the case of the futures markets compared with the operations of the 
CME. 

In this respect, our research contributes to the financial literature in two 
ways: 1) extending the financial literature by examining the performance of 
futures in two asymmetric economies characterized by markets, of different 
levels of development and offering a converse underlying asset; and, 2) 
analyzing practical alternative tools, sanctioned by regulating authorities, 
frequently used by market players in their decisions concerning estimations 
of currency coverage with futures of two economies linked by trade 
and financial activities facing significant economic-financial challenges. 
Moreover, it is important to recall that Mexico is the 15th world economy 
(World Bank 2020), while the Mexican peso currently ranks eight in the 
world regarding global liquidity, behind the USD, EUR, JPY and GBP, and its 

2	 It includes market capitalization of all U.S. based public companies listed in the 
New York Stock Exchange, Nasdaq, and OTCQX U.S. Market: https://siblisresearch.
com/data/us-stock-market-value/

 

Table 1 
	 "Asymmetries between United States and Mexico, 2017 

(billions of U.S. dollars)"

	 COUNTRY	 GDP	 GDP PER	 "TOT STOCK MKT	 TOTALSTOCK 
			   CAPITA	 CAPITALIZATION"	 MKT CAPITAL 
					     GDP

	United States	 19,485. 394	 53,336	 31,774.59	 163.01%

	 Mexico	 1,150.89	 10,292	 417.021	 36.24%

	 Mexico/US	 5.53%	 19.30%	 1.31%

Source: World Bank National Accounts data, and OECD National Accounts data, 
2020, and: https://siblisresearch.com/data/us-stock-market-value/ https://www.
indexmundi.com/facts/mexico/market-capitalization-of-listed-companies
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most popular currency pairing is the United States  Dollar (Forex Trading 
Academy, 2020).

The paper is structured as follows. After the introduction, the second 
part presents a review of the literature. The third section describes the data 
and pre-estimation statistical analyses. The fourth section deals with the 
Value at Risk, Expected Short Fall, and GARCH econometric models. The 
fourth part corresponds to empirical application and analysis of results. The 
fifth and final section presents the conclusions.

1.  Related research

As previously mentioned, foreign exchange risk has become more and 
more important. The financial markets have responded either enhancing 
traditional hedging instruments, or else creating new derivatives for this 
purpose. The volatility of markets, along with a search for tools to manage 
risk, have led to serious academic research and to the design of new financial 
instruments. In this section, some studies related to the use of VaR and 
Expected Short Fall applications adjusted by GARCH modeling are reviewed. 
GARCH modeling is important to overcome homoscedasticity assumption 
problems, which are ignored in many studies. It is important to acknowledge 
that VaR and ES have been endorsed by international and local regulation 
authorities. The complexity of other sophisticated models has limited their 
application, particularly in emerging markets.

Various studies confirm the benefits of hedging strategies with futures 
by applying VaR analyses extended with GARCH modeling. Among some 
earlier works there must be mentioned Burns (2002), Yamai and Yoshiva 
(2005) and Mazin and Janabi (2006). Burns (2002) compares VaR estimates 
using univariate GARCH models. His study comprised a sample of the S&P 
index over a period of nearly 70 years of daily returns. His evidence shows 
that GARCH estimates are superior to the other methods in terms of the ac-
curacy and coherence.

Yamai and Yoshiva (2005) illustrate that tail risk of VaR can cause serious 
problems in certain cases; expected shortfall can serve as an alternative. 
The authors analyze concentrated credit portfolios, and foreign exchange 
rates under market stress. They show that expected shortfall requires a 
larger sample size than VaR to provide the same level of accuracy. Mazin 
and Janabi (2006) deal with foreign trade risk for the case of the Moroccan 
Dirhamt, considering proper adjustments for the illiquidity of both long and 
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short trading positions. They employ value at risk (VaR) to assess risk and 
they deliver proactive practical approaches to manage foreign‐exchange 
trading risk exposures. 

A more recent work by Wang, Wu, Chen And Zhou (2010) employ extreme 
value theory (EVT). According to their findings, the expected shortfall 
cannot improve the tail risk problem of value-at-risk (VaR). The evidence of 
back testing indicates that EVT-based VaR values underestimate the risks of 
exchange rates such as USD/CNY and HKD/CNY, most likely caused by the 
continuous appreciation of CNY against USD and HKD. However, compared 
with VaR values calculated by historical simulation and variance–covariance 
method, VaR values calculated by EVT can measure risk more accurately for 
the exchange rates of JPY/CNY and EUR/CNY.

In turn, Ben Raheb, Ben Salha, and Ben Rejeb (2012) empirically test four 
Value-at-Risk simulation methods, namely, Variance-Covariance, Historical 
Simulation, Bootstrapping and Monte Carlo simulation. Their study includes 
three currencies and four currency portfolios in the Tunisian exchange 
market. The data covers the period from 1999 to 2007. Independently of the 
technique applied, the Japanese Yen seems to be the riskiest currency. In 
addition, as expected, diversification reduces exchange rate risk. Results 
based on these tests suggest that the traditional Variance-Covariance is the 
most appropriate method.

In another work, Nadarajah (2014) also find some limitations on value 
at risk and decide to apply expected shortfall to overcome them. They make 
an important contribution reviewing estimation methods of over 140 
references about expected shortfall. 

A frequent research theme deals with the relationship between exchange 
rates and stock markets. This is the approach followed by Reboredo, Rivera-
Castro, and Ugoline (2016). They extend the analysis of foreign exchange 
risk examining downside and upside risk spillovers from exchange rates to 
stock prices and vice versa for a set of emerging economies. Dependence 
is determined using copulas and estimating downside and upside value-at-
risk and conditional value-at-risk. Findings reveal a positive relationship 
between stock prices and currency values in emerging economies with 
respect to the US dollar and the euro, with downside and upside spillover risk 
effects transmitted both ways. Furthermore, they also find asymmetries in 
upside and downside risk spillovers and asymmetric differences in the size 
of risk spillovers with the domestic currency values against the US dollar 
and the euro. 

(2012) empirically test four
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In a more recent work, Burdorf and van Vuuren (2018) recognize 
that Expected Shortfall has been imposed by regulatory authorities to 
overcome the limitations of VaR (it is neither sub-additive nor coherent). 
However, VaR is still needed to estimate the tail of conditional expectation 
(the ES). These two risk measures behave very differently during growth 
and recession periods in developed and emerging economies. Using equity 
portfolios assembled from securities of the banking and retail sectors in 
the UK and South Africa, historical, variance-covariance and Monte Carlo 
approaches are used to determine VaR (and hence ES). The results are back 
tested and compared, and normality assumptions are tested. The empirical 
evidence shows that the results of the variance covariance and the Monte 
Carlo approaches are more consistent in all environments in comparison 
to the historical outcomes regardless of the equity portfolio considered. 
The industries and periods analyzed influenced the accuracy of the risk 
measures; the different economies did not.

Following this trend of studies, Su and Hung (2018) utilize seven bivariate 
(GARCH) models to forecast the out-of-sample VaR of 21 stock portfolios and 
seven currency-stock portfolios with three weight combinations. The seven 
models are constructed by four types of bivariate variance-covariance 
specifications and two approaches of parameters estimates. The four types 
of bivariate variance-covariance specifications are the constant conditional 
correlation, asymmetric and symmetric dynamic conditional correlation and 
the BEKK model; the two include the standard and non-standard approaches. 
Empirical results show that, regarding the accuracy tests, the VaR forecast 
performance of stock portfolios varies with the variance-covariance 
specifications and the approaches of parameters estimate, whereas it does 
not vary with the weight combinations of portfolios. Conversely, the VaR 
forecast performance of currency-stock portfolios is almost the same for all 
models and still does not vary with the weight combinations of portfolios. 

Tabasi, Yousefi, Ghasemi and Tamošaitienė (2019) estimate market risk 
in the Tehran Stock Exchange; they employ Conditional Value at Risk and 
Expected Shortfall. Extreme Value Theory is used to measure risk more 
precisely. Also, Generalized Autoregressive Conditional Heteroscedasticity 
(GARCH) models are employed to model the volatility-clustering feature, as 
well as to estimate the parameters of the model, The Maximum Likelihood 
method is also employed. The evidence reveals that when estimating the 
model parameters, assuming a t-student distribution function delivers 
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better results than the normal distribution function. Finally, Monte Carlo 
simulation is employed for back-testing.

Also, related to recent trends in VaR/ES research, Paton, Zeigel, and Chen 
(2019) make use of contemporary statistical decision theory to surmount 
the problem of “elicitability” for ES by jointly modeling ES and VaR, which 
leads the authors to propose new dynamic models for these risk metrics. 
Estimations and inference methods are carried out for the proposed models; 
employing simulation they prove that their methods have good finite-sample 
properties. These models are applied to daily returns on four international 
share indices; the evidence confirms that the proposed new ES–VaR models 
outperform forecasts using GARCH or rolling window models.

Taylor (2019), using stock market indexes, advances a method for 
predicting ES corresponding to VaR forecasts produced by quantile 
regression models, methodology equivalent to maximum likelihood based 
on an asymmetric Laplace (AL) density. He allows the density’s scale to be 
time-varying and shows that it can be used to estimate conditional ES. Thus 
a joint model of conditional VaR and ES by maximizing an AL log-likelihood 
is presented. Although this estimation framework uses an AL density, it 
does not rely on an assumption for the return’s distribution. Taylor also 
uses the AL log-likelihood for forecast evaluation and show that it is strictly 
consistent for the joint evaluation of VaR and ES. 

Most recently, Badaye and Narsoo (2020) present a novel methodology 
to explore the performance of several multivariate VaR and ES models in 
order to estimate the risk of an equally weighted portfolio of one minute 
intraday frequency observations for five foreign currencies; they employ 
the multiplicative component MC-GARCH model on each return series 
and by modelling the dependence structure using copulas. VaR and ES are 
forecasted for an out-of-sample set using Monte Carlo simulation. Concerning 
VaR forecasting performance, back-testing results indicated that four out 
of the five models implemented could not be rejected at five per cent level 
of significance; further evaluation of the ES forecasting models revealed 
that only the Student’s t and Clayton models could not be rejected, which 
heightens the importance of selecting an appropriate copula modeling for 
the dependence structure.

Another research using intraday data is the work by Meng and Taylor 
(2020). To attain further information about the tail behavior of five stock 
indexes returns, as well as concerning five individual corporate shares 
returns, the authors develop joint scoring functions for VaR and ES which 
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allow them to estimate two risk measures based on intraday data. Meng 
and Taylor focus on the intraday range, namely the difference between 
the highest and lowest intraday low prices. To alleviate the challenge of 
modelling extreme risk measures, the authors propose using the intraday 
low series. Based on a theoretical result applying Brownian motion they 
show that a quantile of the daily returns can be estimated as the product 
of a constant term and a less extreme quantile of the intraday low returns; 
this is defined as the difference between the lowest log price of the day and 
the log closing price of the previous day. Then, they employ the VaR and ES 
estimates of the intraday low returns to estimate the VaR and ES of the daily 
returns. Meng and Taylor provide empirical support for the new proposals 
using data for five stock indices and five individual stocks.

Concerning Latin America and Mexico the literature reports few studies, 
none is related with exchange rate coverage. Alonso and Arcos (2006) 
employ various parametric and nonparametric methods for calculating the 
VaR metric for a portfolio of 7 Latin American markets; they employ EWMA 
and TGARCH models, the most suitable models for 95% confidence levels, 
however, showing low performance taking a 99% confidence level.

Similarly, Vergara and Maya (2007) have a work on parametric and 
nonparametric GARCH models for stock returns belonging to the Colombian 
market; in their work they present applications of VaR and a multivariate 
GARCH model concluding that the modeling of the conditional distribution of 
returns corroborates the superiority of the estimation of these models over 
the conditional covariance matrix in the determination of gains obtained.

Finally, Ramírez and Ramírez (2007) focus their study on the analysis of 
VaR metrics applied to Mexican shares. de Jesús and Ortiz (2012) work with 
the CVaR model in conjunction with the theory of extreme values applying 
them to the stock indices of Brazil and Mexico, while Reyes and Ortíz (2013) 
use the M-VaRCH methodology (Value at Risk models and multivariate 
GARCH models) to analyze trinational portfolios from the NAFTA countries, 
Canada, United States and Mexico.

Summing up, research on risk associated with exchange rate and 
hedging strategies is very important. The use of VaR and CVaR show the 
potential losses that the foreign exchange market can incur in. Applying 
GARCH modeling to those metrics, enhances their precision and applicability. 
Regarding currency hedging, academic research has concentrated on other 
risk issues such as the determination of the optimal hedge ratio. The use of 
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El modelo colectivo de riesgo, describe el agregado de reclamaciones 
como un fenómeno adverso para el patrimonio de una aseguradora, que pue-
de presentarse durante un período de tiempo [0,T]. Uno de los supuestos, 
que generalmente se considera por comodidad, es que existe independencia 

entre el número de reclamaciones y el monto de las mismas, lo que contrapone lo 
estipulado por la teoría del modelo colectivo de riesgo. 
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The collective risk model is defined in the actuarial literature as an important risk 
distribution analysis tool for insurance companies. Actuarial textbooks assume an 
independent behavior between the number of claims and their amount. The main 
objective of this paper is to show that under certain circumstances evidence of 
dependency between the variables studied may be found. To ascertain this objective 
copula functions, such as Elliptical and Archimedeans, were used. A Complaints Portfolio 
on the damage section of Afirme Seguros Company from Mexico City, Mexico, was 
analyzed. The empirical evidence found showed the existence of dependency between 
the number of claims and their amount, this finding contradicts what is stated in the 
Collective Risk Model Theory.
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VaR modeling has been rather limited, albeit highly sophisticated models 
have been designed for mature markets and developed economies. 

VaR applications for emerging markets have mostly dealt with the 
impact of exchange rates on trade, and real and portfolio investments. 
Furthermore, research using high frequency intraday data is nonexistent 
in these markets due to the lack of information, as well as high costs. There 
are no concrete works about exchange rate hedging in Mexico. Therefore, 
this paper constitutes an important contribution on this matter. Moreover, 
this paper uses VaR metrics to compare hedging efficiency between two 
markets: one fully developed, and the other an emerging market; hedging 
is estimated in the dollar/peso offered by the CME of Chicago vis a vis the 
peso/dollar futures offered in the MexDer. The final econometric Var and 
ES include GARCH modeling to overcome erroneous homoscedasticity 
assumptions assumed in many studies.

3.  Data and pre-estimation statistical analyses

3.1.  Data and period studied

A careful research strategy considering the big differentials between the 
MexDer and the CME was undertaken. Contract characteristics are similar. 
However, the CME is the largest futures market globally and its operations 
began in the nineteenth century. The MexDer, on the contrary, is a small 
market from an emerging economy; after some transitional issuing of some 
forward-warrant assets, the market finally began operations on December 
15, 1998, trading peso/dollar futures. 

Although trading contracts follow similar norms than other markets, 
besides the differences in size and maturation, the big difference so far is 
the size of each contract. In Mexico, each futures contract covers a lot of 
10,000 U.S. dollars; in the CME each futures contract covers a lot of 500,000 
Mexican pesos about 22,230 U.S. dollars. Futures in each market are subject 
to the volatility of both currencies, but the dollar is the dominant currency. 

The period of analysis includes from October 2016 to June 2017. Data for 
the CME and the MexDer was gathered from Bloomberg; exchange rate was 
obtained from Banxico (Mexico’s Central Bank). For this research, it was 
considered a nine months cycle subdivided in three subperiods. The lapses 
between these partitions are: The first sub period (ex-ante) includes from 
October to December 2016, it analyzes the behavior of hedging prior a lapse 
of some stress; the second period examines the problem during a volatility 
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Table 2
Exchange Rate Pressure Periods

Subperiods
Peso Futures in Chicago

	 FROM	 TO

EXANTE_FMXP PERIOD	 OCT¨-16	 DEC-16	 PERIOD PRIOR EXCHANGE PRESSURE

AMIDTS_FMXP PERIOD	 JAN¨-17	 MAR¨-17	 PERIOD AMIDTS EXCHANGE PRESSURE 

EXPOST_FMXP PERIOD	 APR-17	 JUN¨-17	 PERIOD AFTER EXCHANGE PRESSURE

Dollar futures in Mexico

EXANTE_FDOLLAR PERIOD	 OCT¨-16	 DEC-16	 PERIOD PRIOR EXCHANGE PRESSURE

AMIDTS_FDOLLAR PERIOD	 JAN¨-17	 MAR¨-17	 PERIOD AMIDTS EXCHANGE PRESSURE 

EXPOST_FDOLLAR PERIOD	 APR-17	 JUN¨-17	 PERIOD AFTER EXCHANGE PRESSURE

Source: Prepared by authors with data from Blomberg and Bank of Mexico

sequence, from January to March 2017, impacted by tensions caused to the 
Mexican economy due to decreasing and unstable oil prices (Mexico’s second 
largest export), as well as a shaky exchange rate; the third (Ex-post period) 
comprises April to June 2017, which aims to examine post-stress futures 
behavior in both the Mexican and Chicago futures markets. This approach 
allows us to analyze in dept the performance of both markets. Table 2 shows 
these subperiods. 

3.2. Stationarity Analysis and Basic Statistics

Daily closing prices were used to calculate the logarithm of prices returns. 
All econometric analyses performed in this paper used these returns.
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Where pi > pj
To ensure well-founded answers to the hypothesis, first the stationarity 

of the series was tested, applying the ADF test. The t-Student test was also 
carried out to reinforce the results of the stationarity of the series. Normality 
was tested employing the Jarque-Bera test (Jarque-Bera, 1987).

To the above described tests, the ARCH LM test for heteroscedasticity 
was added, for one, two, three and four lags. Akaike and Schwartz criteria 
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were used to determine the minimum of lags that the model may include, 
which is expected to be a GARCH (1,1). The models ARCH and GARCH 
were applied with intercept and a moving average mean; the results were 
examined following the above-mentioned criteria.

In relation to the analysis and adjustment of volatility, the standard 
deviation in statistical terms is a measure of the rigor of random changes, 
generally unpredictable variations in the profitability or price of a title. 
Figures 1 and 2 show the historical behavior of spot and future prices and 
logarithmic returns for both the MexDer and the CME. 

The asymmetrical and characteristic volatility clusters of the 
logarithmic returns series derive from the size of the impacts on prices and 
returns in certain periods. Particularly, market instabilities and bad news 

Figure 1. Behavior of Mexican and U.S. futures prices series

Source: Prepared by authors with logarithmic returns from data 
on the futures prices from Bloomberg and Banxico.
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Figure 2. Behavior of Mexican and U.S. futures returns series

	 Panel a)	 Panel b) 

Source: Prepared by authors with logarithmic returns from 
data on the futures prices of MexDer and CME

	 Panel c)	 Panel d)

increase volatility. At first glance, it would appear that the series are non-
stationary (the mean being a function of time and non-constant variance).

Table 3 presents the basic statistics of the full sample series. It can be 
observed that the mean values for both markets and for future prices and 
their returns are positive. Regarding the price series, the variance in the 
MexDer is greater than the variance of the CMD. Yet, the logarithmic return 
series reveal the opposite behavior; CME’s standard deviation is larger.3 
Concerning kurtosis, Table 3 highlights the fact that all return series are 
high peaked. As far as asymmetry is concerned, all series are asymmetric, 
skewed to the left. 

3	 Econometric results reported in Tables 3 and 4 were obtained employing E-View 
10.0.
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Finally, the Jarque Bera statistics confirms that all series are non-
normal. The sharp differences in the statistical behavior of these market can 
be attributed to the fact that future lots are traded in currencies of different 
value, reflecting therefore the instability of the peso in the MexDer. However, 
this behavior also suggests the presence of market segmentation among 
these two neighboring countries; apparently, participants (hedgers) in these 
markets belong to well differentiated groups; most likely, few participants 
operate in both markets. The identified differences also unveil opportunities 
for price arbitrage; the dollar price in the MexDer and its equivalent in 
pesos in the CME most likely present temporary price disequilibria creating 
opportunities for spatial arbitrage.4 

The results of the Dickey Fuller Augmented Unit Root (ADF)5 indicate 
that the normal (raw) series are non-stationary, since the test value is 

4	 Taking advantage of the lower price in one market to sell at the higher price in the 
other market. 

5	 Dickey and Fuller (1979).

 

Table 3
Basic Statistics of prices and  logaritmic return series of the MexDer and CME

Futures Prices

Market	 Futures	  Mean	  Std. Dev.	  Skewness	  Kurtosis	  Jarque-Bera	 ADF
MexDer
	 Dollar Futures	 16.8449	 2.4040	 -0.2712	 1.907	 66.852	 -13.166
	 Dollar Spot	 16.8401	 2.4094	 -0.2654	 1.898	 67.274	 -19.353
CME
	 MXP Futures	 5.9999	 1.0064	 -0.4909	 2.102	 37.557	 -23.394
	 MXP Spot	 4.8992	 0.3004	 -0.1028	 2.106	 37.849	 -31.623

Logaritmic Return Series

Market	 Returns	  Mean	  Std. Dev.	  Skewness	  Kurtosis	  Jarque-Bera	 ADF
MexDer
	 Dollar Futures	 0.00002	 0.0083	 -0.1363	 3.657	 22.739	 -2.864
	 Dollar Spot	 0.00003	 0.0001	 -0.0448	 4.827	 150.243	 -2.864
CME
	 MXP Futures	 0.00014	 1.0984	 -0.1291	 8.064	 1154.824	 -2.864
	 MXP Spot	 0.00014	 1.0918	 -0.1209	 9.449	 1870.436	 -2.854
95% C.V.							       5.99	 -3.96

Source: Prepared by authors with futures and spot 
prices. Bank of Mexico and Bloomberg.
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Table 4
HETEROCEDASTICITY TEST

Arch Test

Criteria	 Dollar Futures	  Spot Dollar	 MXPFutures	 Spot MXP 

Akaike info criterion	 -8.7058	 -8.7455	 -6.7534	 -6.9092
Schwarz criterion	 -8.6921	 -8.7270	 -6.7349	 -6.8907
Hannan-Quinn criterion	 -8.7006	 -8.7385	 -6.7464	 -6.9022

GARCH Test

Akaike info criterion	 -8.7791	 -8.8560	 -6.7734	 -6.7903
Schwarz criterion	 -8.7607	 -8.8328	 -6.7449	 -6.9672
Hannan-Quinn criterion	 -8.7721	 -8.8472	 -6.7564	 -6.9815

ARCHLM 1 Test

Akaike info criterion	 3.9088	 3.9640	 9.1179	 6.7677
Schwarz criterion	 3.9180	 3.9732	 9.1271	 6.7770
Hannan-Quinn criterion	 3.9123	 3.9675	 9.1214	 6.7712 

Source: Prepared by authors with futures and spot 
prices. Bank of Mexico and Bloomberg.

smaller than the critical value (-3.96); however, the logarithmic return series 
are stationary according to the same criterion. This is substantial from the 
point of view of coverage, since non-stationary series can lead to spurious 
regressions results and therefore invalidate the coverage estimate.

Figures 2, and 3 and Table 2 confirm that the spot and future time 
series of the Mexican and Chicago derivative markets are non-normal; 
These findings justify the decision to test stationarity applying the unit root 
Augmented Dickey Fuller test. The results are presented in Table 4. We apply 
this test for price levels and first differences without intercept and trend. 
The test confirms that the series of logarithmic returns are non-stationary, 
as shown in Table 2. 

The tests ARCH 1, GARCH (1.1), and ARCHLM 1 were carried out. 
Models were selected according to the Akaike, Schwartz and Hannan, 
criteria. The decision rule indicates to choose the model with the lowest 
numerical values which in this case corresponds to the GARCH (1.1) model 
(Table 3).
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copula functions, such as Elliptical and Archimedeans, were used. A Complaints Portfolio 
on the damage section of Afirme Seguros Company from Mexico City, Mexico, was 
analyzed. The empirical evidence found showed the existence of dependency between 
the number of claims and their amount, this finding contradicts what is stated in the 
Collective Risk Model Theory.
JEL Classification: G22, D81, C15.
Keywords: Collective Risk Model, Insurances, Copula, Dependent Claims.

1 La esperanza de pérdida para la compañía debe ser menor a lo que se cobra en 
primas (Klugman, 2012). 
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4.  VaR and ES econometric modeling 

4.1 Value at Risk (VaR)6 

The VaR of a portfolio of financial futures contracts is defined as the max-
imum expected loss that an investor will face over a period of time given a 
confidence level α, (usually 95%, 97.5% and 99%), when investing, anchor-
ing or liquidating positions in the portfolio due to unforeseen movements 
affecting market factors such as exchange rates, interest rates, prices of fi-
nancial assets. Likewise, this metric is used by regulators to procure control 
of the operations carried out by financial institutions to establish standard 
capital requirements measures of financial institutions.

Statistically, VaR is defined as the probability that changes in the portfo-
lio value will not exceed the maximum expected loss over a specified period 
of time for a given confidence level; Let
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𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑚𝑚í𝑛𝑛 {𝑥𝑥 ∈ 𝑅𝑅: 𝑃𝑃(𝑋𝑋 > 𝑥𝑥) ≤ 1−∝}  (5) 

                                           = 𝑚𝑚í𝑛𝑛 {𝑋𝑋 > 𝑥𝑥: 𝐹𝐹𝑋𝑋≥ ∝}                   (6) 
 
 This provides the return that is exceeded with a probability of (100 - ∝) per cent.  

However, two portfolios may have the same VaR value, but with different potential losses. 

This is because the VaR does not calculate losses beyond the 100% percentile. This 

deficiency is mitigated by estimating an additional, performance metric, that is, the 

Conditional Risk Value (CVaR) or Expected Shortfall (ES), described below. The Value at 

Risk is estimated by applying i, with αi, with i = 1%, 2.5%, 5%, and 10%. In our study the 

performance metric used corresponds to the percentage reduction in the VaR-GARCH 

(throughout this paper it will be called VaRG), which measures the percentage VaR-

GARCH, (applying the GARCH model) of a hedged portfolio compared to the VaR-GARCH 

of an uncovered portfolio, this applies to both VaR and ES; the Cotter and Hanly (2006) 

efficiency coefficient was slightly modified to include GARCH modeling. Our modified 

version is:         
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 1 − { 𝑽𝑽𝑽𝑽𝑽𝑽 (𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮)𝒊𝒊% 𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑
𝑽𝑽𝑽𝑽𝑽𝑽(𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮)𝒊𝒊% 𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑}             (7) 

 
VarG = the percentage reduction in the VaRG of the hedged portfolio as compared to 

the unhedged portfolio. If future contracts fully eliminate risk VaRG = 1, whereas, if VaRG 

= 0 futures contracts do not reduce risk. Therefore, let, x be a result of applying the metrics, 

then [𝑥𝑥 ∈ 𝑅𝑅 │0 ≤ 𝑥𝑥 ≤ 1], hence, a greater x indicates a better performance of the coverage. 

The same applies for the ES metrics. VaRG was estimated using various confidence levels, α 

= 10%, 5%, 2.5%, y 1%.7 

Several criticisms have been generated towards the VaR model since it shows instability if 

there is no normal distribution of losses, as empirical evidence indicate. Thus, coherence is only based 

on the standard deviation of normal distributions on asset returns; under the assumptions of normal 

distribution the VaR is proportional to the standard deviation of the instrument returns (Reyes and 

                                                 
7 The formula generalizes for portfolios of n assets. Our portfolio comprises only one asset in each market: the 
dollar in the MexDer and the Peso in the CME. The hedged portfolio refers to the asset protected with a 
futures contract; the unhedged portfolio simply holds the original asset unhedged. 
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per cent. However, two portfolios may have the same VaR value but with 
different potential losses. This is because the VaR does not calculate losses 
beyond the 100% percentile. This deficiency is mitigated by estimating an 
additional performance metric, that is, the Conditional Risk Value (CVaR) 
or Expected Shortfall (ES) described below. The Value at Risk is estimated 
by applying i, with αi, with i = 1%, 2.5%, 5%, and 10%. In our study the 
performance metric used corresponds to the percentage reduction in the 
VaR-GARCH (throughout this paper it will be called VaRG), which measures 
the percentage VaR-GARCH (applying the GARCH model) of a hedged 
portfolio compared to the VaR-GARCH of an uncovered portfolio, this applies 
to both VaR and ES; the Cotter and Hanly (2006) efficiency coefficient was 
slightly modified to include GARCH modeling. Our modified version is: 
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Introducción

El impacto de las reclamaciones en una compañía de seguros puede des-
equilibrar la estabilidad de la misma. Por esta razón, es fundamental una 

adecuada administración, evaluación y previsión de la siniestralidad dentro 
de un horizonte de tiempo finito; particularmente considerando las condi-
ciones económicas y sociales de los asegurados, para garantizar un correcto 
nivel de reservas y cálculo de primas (cumpliéndose el principio de ganancia 
neta dentro del seguro).1 

El modelo colectivo de riesgo, describe el agregado de reclamaciones 
como un fenómeno adverso para el patrimonio de una aseguradora, que pue-
de presentarse durante un período de tiempo [0,T]. Uno de los supuestos, 
que generalmente se considera por comodidad, es que existe independencia 

entre el número de reclamaciones y el monto de las mismas, lo que contrapone lo 
estipulado por la teoría del modelo colectivo de riesgo. 
Clasificación JEL: G22, D81, C15.
Palabras clave: modelo colectivo de riesgo, seguros, cópula, reclamaciones depen-
dientes.

AbstRAct

The collective risk model is defined in the actuarial literature as an important risk 
distribution analysis tool for insurance companies. Actuarial textbooks assume an 
independent behavior between the number of claims and their amount. The main 
objective of this paper is to show that under certain circumstances evidence of 
dependency between the variables studied may be found. To ascertain this objective 
copula functions, such as Elliptical and Archimedeans, were used. A Complaints Portfolio 
on the damage section of Afirme Seguros Company from Mexico City, Mexico, was 
analyzed. The empirical evidence found showed the existence of dependency between 
the number of claims and their amount, this finding contradicts what is stated in the 
Collective Risk Model Theory.
JEL Classification: G22, D81, C15.
Keywords: Collective Risk Model, Insurances, Copula, Dependent Claims.

1 La esperanza de pérdida para la compañía debe ser menor a lo que se cobra en 
primas (Klugman, 2012). 
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applies for the ES metrics. VaRG was estimated using various confidence 
levels, α = 10%, 5%, 2.5%, y 1%.7

Several criticisms have been generated towards the VaR model since it 
shows instability if there is no normal distribution of losses, as empirical 
evidence indicate. Thus, coherence is only based on the standard deviation 
of normal distributions on asset returns; under the assumptions of normal 
distribution the VaR is proportional to the standard deviation of the instru-
ment returns (Reyes and Ortiz, 2013). This leads us to choose ES which is a 
coherent metric since it provides an estimator not only of the probability of 
loss, but also of its magnitude.

4.2  Conditional Value at Risk (CVar), or Expected Shortfall (ES)

The CVaR, or ES measures the average loss conditioned to the fact that VaR 
has been exceeded. Such metric provides, as mentioned, coverage with an 
estimator not only of the probability of loss, but also of the magnitude of a 
possible loss. 

1.	 This means that managing risk using VaR can be inefficient to capture 
the effects of diversification which reduces portfolio risk

2.	 Uryasev and Rockafeller (2002) (2002) responded to this VaR prob-
lem advancing Conditional Value at Risk (CVaR), also known as Ex-
pected Shortfall (ES). When the distribution of profit and loss follows 
a normal distribution, then it should be used.
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It is an alternative risk measure to partially amend the deficiencies presented by VaR.  CVaR 

is in various literature works referred to as the expected deficit or Expected Shortfall, ES. 

For a X, let E(│X│)< ∞ and its distribution function FX, the Expected Shortfall of a 

given confidence α ϵ (0,1) can be defined as, 

 

(𝐸𝐸𝐸𝐸) =  1
1 − 𝛼𝛼 ∫ 𝑞𝑞𝑢𝑢(𝐹𝐹𝑋𝑋)𝑑𝑑𝑑𝑑 … … (10)
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Where qu(FX) = FX(u) is a quantile function FX, thus, the relation between VaR and y ES is, 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝐸𝐸𝐸𝐸) =  1
1 − 𝛼𝛼 ∫ 𝑉𝑉𝑉𝑉𝑉𝑉(𝐹𝐹𝑋𝑋)𝑑𝑑𝑑𝑑 … … (11)
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The expected excess measure is a coherent risk measure based on the expected value 

of potential losses that exceeds the VaR level. This robust risk measure has been studied 

independently and defined in different ways by several authors in recent years. The main 

names or variants adopted by this risk measure are as follows: Tail Conditional Expectation 

(TCE), Worst Conditional Expectation (WCE), Tail Mean CVaR, Mathematical Conditional 
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It is an alternative risk measure to partially amend the deficiencies pre-
sented by VaR.  CVar is often referred to as the expected deficit or Expected 
Shortfall, ES.

7	 The formula generalizes for portfolios of n assets. Our portfolio comprises only 
one asset in each market: the dollar in the MexDer and the Peso in the CME. The 
hedged portfolio refers to the asset protected with a futures contract; the un-
hedged portfolio simply holds the original asset unhedged.
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Ortiz, 2013). This leads us to choose ES which is a coherent metric since it provides an estimator not 

only of the probability of loss, but also of its magnitude. 
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In statistical terms, the ES is based on a continuous distribution whose random 

variable measuring changes in portfolio value losses can be defined as: the mathematical 

conditional expectation of losses that have exceeded the VaR level,  

 

𝐸𝐸𝐸𝐸𝐸𝐸(𝑋𝑋) = −𝐸𝐸(𝑋𝑋|𝑋𝑋 ≤ 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋))                          (12) 

 

As in the performance metric presented in eq. (7) to evaluate coverage performance 

in the VaRG model, the coefficient to include GARCH assessment was modified. In this 

model, the coefficient corresponds to the percentage reduction in the ES, under the alphas 

considered in the VaRG; the modified Cotter and Handly (2006) efficiency coefficient, to 

include GARCH modeling is:8 

 

𝐸𝐸𝐸𝐸𝐸𝐸 = 1 − { 𝐸𝐸𝐸𝐸(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)𝑖𝑖% ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
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So, if a position in CME is found to have a higher VaRG but a lower ESG than 

MexDer futures, that indicates that the volatility of futures in CME is higher in normal market 

situations, but in extreme situations the MexDer futures have higher volatility. 

 

4.3. GARCH Modeling 
 
The use of GARCH (p,q) models has become widespread to explain the variance in time. In 

general, GARCH models assume that conditional variance is affected by their past events. 

The advantage of these models over the original ARCH models (p) is that GARCH models 

allow to capture persistence of volatility (presence of volatility clusters). In fact, regarding 

exchange rates, several papers in the financial literature deal with the issue of optimal 

coverage using multivariate GARCH models to generate optimal hedge ratio (Kroner and 

Sultan, 1993). However, the performance of multivariate GARCH models has been poor 

                                                 
8 See supranote 4. 
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As in the performance metric presented in eq. (7) to evaluate coverage 
performance in the VaRG model, the coefficient to include GARCH assess-
ment was modified. In this model, the coefficient corresponds to the per-
centage reduction in the ES, under the alphas considered in the VaRG; the 
modified Cotter and Handly (2006) efficiency coefficient, to include GARCH 
modeling is:8

8	 See supranote 4.
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Introducción

El impacto de las reclamaciones en una compañía de seguros puede des-
equilibrar la estabilidad de la misma. Por esta razón, es fundamental una 

adecuada administración, evaluación y previsión de la siniestralidad dentro 
de un horizonte de tiempo finito; particularmente considerando las condi-
ciones económicas y sociales de los asegurados, para garantizar un correcto 
nivel de reservas y cálculo de primas (cumpliéndose el principio de ganancia 
neta dentro del seguro).1 

El modelo colectivo de riesgo, describe el agregado de reclamaciones 
como un fenómeno adverso para el patrimonio de una aseguradora, que pue-
de presentarse durante un período de tiempo [0,T]. Uno de los supuestos, 
que generalmente se considera por comodidad, es que existe independencia 

entre el número de reclamaciones y el monto de las mismas, lo que contrapone lo 
estipulado por la teoría del modelo colectivo de riesgo. 
Clasificación JEL: G22, D81, C15.
Palabras clave: modelo colectivo de riesgo, seguros, cópula, reclamaciones depen-
dientes.

AbstRAct

The collective risk model is defined in the actuarial literature as an important risk 
distribution analysis tool for insurance companies. Actuarial textbooks assume an 
independent behavior between the number of claims and their amount. The main 
objective of this paper is to show that under certain circumstances evidence of 
dependency between the variables studied may be found. To ascertain this objective 
copula functions, such as Elliptical and Archimedeans, were used. A Complaints Portfolio 
on the damage section of Afirme Seguros Company from Mexico City, Mexico, was 
analyzed. The empirical evidence found showed the existence of dependency between 
the number of claims and their amount, this finding contradicts what is stated in the 
Collective Risk Model Theory.
JEL Classification: G22, D81, C15.
Keywords: Collective Risk Model, Insurances, Copula, Dependent Claims.

1 La esperanza de pérdida para la compañía debe ser menor a lo que se cobra en 
primas (Klugman, 2012). 
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4.3. GARCH Modeling 
 
The use of GARCH (p,q) models has become widespread to explain the variance in time. In 

general, GARCH models assume that conditional variance is affected by their past events. 

The advantage of these models over the original ARCH models (p) is that GARCH models 

allow to capture persistence of volatility (presence of volatility clusters). In fact, regarding 
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So, if a position in CME is found to have a higher VaRG but a lower ESG 
than MexDer futures, that indicates that the volatility of futures in CME is 
higher in normal market situations, but in extreme situations the MexDer 
futures have higher volatility.

4.3.  GARCH Modeling

The use of GARCH (p,q) models has become widespread to explain the 
variance in time. In general, GARCH models assume that conditional 
variance is affected by their past events. The advantage of these models 
over the original ARCH models (p) is that GARCH models allow to capture 
persistence of volatility (presence of volatility clusters). In fact, regarding 
exchange rates, several papers in the financial literature deal with the 
issue of optimal coverage using multivariate GARCH models to generate 
optimal hedge ratio (Kroner and Sultan, 1993). However, the performance of 
multivariate GARCH models has been poor when used to generate forecasts 
over longer coverage horizons (Brooks et al., 2002), which is not the case of 
our partitions.

The GARCH model we employ is the Vector GARCH model (1,1) propo-
sed by Bollerslev (1986). This model has been also used to generate optimal 
hedge ratio by Baillie and Myers (1991) and Brooks and Chong (2001). This 
models the conditional mean and variance equations as follows:

	

19 
 

when used to generate forecasts over longer coverage horizons (Brooks et al., 2002), which 

is not the case of our partitions. 

The GARCH model we employ is the Vector GARCH model (1,1) proposed by 

Bollerslev (1986). This model has been also used to generate optimal hedge ratio by Baillie 

and Myers (1991) and Brooks and Chong (2001). This models the conditional mean and 

variance equations as follows: 

 
𝑟𝑟𝑠𝑠𝑠𝑠= 𝜇𝜇𝑠𝑠 + 𝜀𝜀𝑠𝑠𝑠𝑠                                      (14) 
𝑟𝑟𝑓𝑓𝑓𝑓= 𝜇𝜇𝑓𝑓 + 𝜀𝜀𝑓𝑓𝑓𝑓                                     (15) 

(𝜀𝜀𝑠𝑠𝑠𝑠
𝜀𝜀𝑓𝑓𝑓𝑓

) 𝜔𝜔𝑡𝑡−1~𝑁𝑁(0, 𝜎𝜎𝑡𝑡
2)                           (16) 

𝜎𝜎𝑠𝑠𝑠𝑠
2 = 𝛾𝛾𝑠𝑠 + 𝛼𝛼𝑠𝑠𝜀𝜀𝑠𝑠,𝑡𝑡−1

2 + 𝛽𝛽𝑠𝑠𝜎𝜎𝑠𝑠,𝑡𝑡−1
2                (17) 

𝜎𝜎𝑓𝑓𝑓𝑓
2 = 𝛾𝛾𝑓𝑓 + 𝛼𝛼𝑓𝑓𝜀𝜀𝑓𝑓,𝑡𝑡−1

2 + 𝛽𝛽𝑓𝑓𝜎𝜎𝑓𝑓,𝑡𝑡−1
2                (18) 

𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠
2 = 𝛾𝛾𝑠𝑠𝑠𝑠 + 𝛼𝛼𝑠𝑠𝑠𝑠𝜀𝜀𝑠𝑠,𝑡𝑡−1

2 𝜀𝜀𝑓𝑓,𝑡𝑡−1
2 + 𝛽𝛽𝑠𝑠𝑠𝑠𝜎𝜎𝑠𝑠𝑠𝑠,𝑡𝑡−1

2           (19) 

 
where,  

rst y rft   = spot and futures’ returns, respectively,  

εst y εft  = residuals representing innovations in the spot and futures prices, respectively,  

Ωt-1 =  the information set at time t-1,  

σ2st and σ2ft, = variance of spot and futures, respectively, and  

σsft  = εst and εft  covariance.   

However, this model is restricted to the diagonal arrays α y β, so only the upper 

triangular portion of the variance-covariance matrix is used. This means that the conditional 

variance depends on past values themselves and the past values of square innovations in 

returns. This reduces the number of parameters to nine (each of the α and β has three 

elements). This is subject to the requirement that the variance-covariance matrix be positively 

defined to generate positive elements of coverage. Let 

 

𝑟𝑟𝑠𝑠𝑠𝑠= 𝜃𝜃𝑠𝑠0  + ∑ 𝑟𝑟𝑠𝑠,𝑡𝑡−𝑗𝑗
𝐽𝐽
𝑗𝑗=1 𝜃𝜃𝑠𝑠𝑠𝑠 + 𝜀𝜀𝑠𝑠𝑠𝑠, 𝑟𝑟𝑓𝑓𝑓𝑓 = ∑ 𝜃𝜃𝑓𝑓𝑓𝑓 + 𝜀𝜀𝑓𝑓𝑓𝑓

𝐾𝐾
𝑘𝑘=1         (20) 

(𝜀𝜀𝑠𝑠𝑠𝑠
𝜀𝜀𝑓𝑓𝑓𝑓

) │Ω𝑡𝑡−1~𝑁𝑁(0, 𝜎𝜎𝑡𝑡
2)                                                      (21) 

𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠
2 = 𝜌𝜌𝜎𝜎𝑠𝑠𝑠𝑠𝜎𝜎𝑓𝑓𝑓𝑓                                                                    (22) 

 
where, j,k = 1 for the GARCH (1,1) model; 𝛾𝛾, 𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 are positive, and αi + 𝛽𝛽𝛽𝛽 ≤ 1, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 =
𝑠𝑠, 𝑓𝑓. The conditional mean follows an autoregressive process. The correlation coefficient 

𝜌𝜌 in equation (22) is a constant. One advantage of this model is that it consists of a positive 
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triangular portion of the variance-covariance matrix is used. This means that the conditional 

variance depends on past values themselves and the past values of square innovations in 

returns. This reduces the number of parameters to nine (each of the α and β has three 

elements). This is subject to the requirement that the variance-covariance matrix be positively 

defined to generate positive elements of coverage. Let 
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where, j,k = 1 for the GARCH (1,1) model; 𝛾𝛾, 𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 are positive, and αi + 𝛽𝛽𝛽𝛽 ≤ 1, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 =
𝑠𝑠, 𝑓𝑓. The conditional mean follows an autoregressive process. The correlation coefficient 
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to generate positive elements of coverage. Let
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when used to generate forecasts over longer coverage horizons (Brooks et al., 2002), which 

is not the case of our partitions. 

The GARCH model we employ is the Vector GARCH model (1,1) proposed by 
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and Myers (1991) and Brooks and Chong (2001). This models the conditional mean and 
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where,  

rst y rft   = spot and futures’ returns, respectively,  

εst y εft  = residuals representing innovations in the spot and futures prices, respectively,  

Ωt-1 =  the information set at time t-1,  

σ2st and σ2ft, = variance of spot and futures, respectively, and  

σsft  = εst and εft  covariance.   
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𝐽𝐽
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where, j,k = 1 for the GARCH (1,1) model; 𝛾𝛾, 𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 are positive, and αi + 𝛽𝛽𝛽𝛽 ≤ 1, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 =
𝑠𝑠, 𝑓𝑓. The conditional mean follows an autoregressive process. The correlation coefficient 

𝜌𝜌 in equation (22) is a constant. One advantage of this model is that it consists of a positive 
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σsft  = εst and εft  covariance.   

However, this model is restricted to the diagonal arrays α y β, so only the upper 
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variance depends on past values themselves and the past values of square innovations in 

returns. This reduces the number of parameters to nine (each of the α and β has three 
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where, j,k = 1 for the GARCH (1,1) model; 𝛾𝛾, 𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 are positive, and αi + 𝛽𝛽𝛽𝛽 ≤ 1, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 =
𝑠𝑠, 𝑓𝑓. The conditional mean follows an autoregressive process. The correlation coefficient 

𝜌𝜌 in equation (22) is a constant. One advantage of this model is that it consists of a positive 
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when used to generate forecasts over longer coverage horizons (Brooks et al., 2002), which 

is not the case of our partitions. 

The GARCH model we employ is the Vector GARCH model (1,1) proposed by 

Bollerslev (1986). This model has been also used to generate optimal hedge ratio by Baillie 

and Myers (1991) and Brooks and Chong (2001). This models the conditional mean and 

variance equations as follows: 
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where, j,k = 1 for the GARCH (1,1) model; 𝛾𝛾, 𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 are positive, and αi + 𝛽𝛽𝛽𝛽 ≤ 1, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 =
𝑠𝑠, 𝑓𝑓. The conditional mean follows an autoregressive process. The correlation coefficient 

𝜌𝜌 in equation (22) is a constant. One advantage of this model is that it consists of a positive  equation (22) is a constant. One 
advantage of this model is that it consists of a positive semi-defined matrix, 
subject to positive conditional variances, which means that the variance-
covariance matrix is positive or non-negative. When using this method, 
the results are used to build hedging portfolios where 
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semi-defined matrix, subject to positive conditional variances, which means that the 

variance-covariance matrix is positive or non-negative. When using this method, the results 

are used to build hedging portfolios where +𝑟𝑟𝑠𝑠 − ℎ ∗ 𝑟𝑟𝑓𝑓 is the short hedge, and y −𝑟𝑟𝑠𝑠 + ℎ ∗ 𝑟𝑟𝑓𝑓  

is the long hedge, 𝑟𝑟𝑠𝑠 and 𝑟𝑟𝑗𝑗 are the spot and futures returns respectively, and, ℎ ∗ is the 

estimated hedge. 

 
4.4. Backtesting or Kupiec proportion of failures test 
 
Kupiec (1995) proposed a test intended to quantify whether the significance level proposed 

by the VaR metric is consistent with the proportion of failures that the model presents, i.e., it 

is a question of confirming whether the model is appropriate considering how many times 

the losses or gains exceed the VaR (failure rate) in the period under consideration. The 

hypothesis of this paper assumes that the failure ratio is the same than the significance level 

of the model. The test verifies that the probability of the number of failures is equal to “x” 

over a sample “n”, considering a binomial distribution,  

  
                         𝑃𝑃(𝑥𝑥; 𝑛𝑛; 𝑝𝑝∗) = (𝑛𝑛

𝑥𝑥)(𝑝𝑝∗)(1 − 𝑝𝑝∗)𝑛𝑛−𝑥𝑥                        (23)  
 

The probability of failure (𝑝𝑝∗) of the VaR metrics is estimated applying a maximum 

likelihood process, a likelihood ratio (LR). Finally, logarithms of a binomial distribution are 

gathered, and this function is maximized with respect to the estimated probability (𝑝𝑝). Once 

the LR estimator is obtained, a statistical contrast is established between the theoretical and 

estimated probabilities (𝑝𝑝∗ 𝑎𝑎𝑎𝑎𝑎𝑎  𝑝𝑝, respectively). The assessment of significance is carried 

out with the maximum likelihood ratio, from the logarithm of the probability distribution 

applied for each of these probabilities; the likelihood ratio defined as:  

 

𝐿𝐿𝐿𝐿𝑈𝑈𝑈𝑈 = 2 [(𝑝𝑝∗)𝑥𝑥(1−𝑝𝑝∗)𝑛𝑛−𝑥𝑥

(𝑝̃𝑝)𝑥𝑥(1−𝑝̃𝑝)𝑛𝑛−𝑥𝑥 ]                                             (24) 
 
The LR test represents a Chi- square distribution with one degree of freedom. 
 
 
5. Empirical Analysis 

 
5.2. Empirical Applications 
 

 is the 
short hedge, y is the long hedge, 
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Introducción

El impacto de las reclamaciones en una compañía de seguros puede des-
equilibrar la estabilidad de la misma. Por esta razón, es fundamental una 

adecuada administración, evaluación y previsión de la siniestralidad dentro 
de un horizonte de tiempo finito; particularmente considerando las condi-
ciones económicas y sociales de los asegurados, para garantizar un correcto 
nivel de reservas y cálculo de primas (cumpliéndose el principio de ganancia 
neta dentro del seguro).1 

El modelo colectivo de riesgo, describe el agregado de reclamaciones 
como un fenómeno adverso para el patrimonio de una aseguradora, que pue-
de presentarse durante un período de tiempo [0,T]. Uno de los supuestos, 
que generalmente se considera por comodidad, es que existe independencia 

entre el número de reclamaciones y el monto de las mismas, lo que contrapone lo 
estipulado por la teoría del modelo colectivo de riesgo. 
Clasificación JEL: G22, D81, C15.
Palabras clave: modelo colectivo de riesgo, seguros, cópula, reclamaciones depen-
dientes.

AbstRAct

The collective risk model is defined in the actuarial literature as an important risk 
distribution analysis tool for insurance companies. Actuarial textbooks assume an 
independent behavior between the number of claims and their amount. The main 
objective of this paper is to show that under certain circumstances evidence of 
dependency between the variables studied may be found. To ascertain this objective 
copula functions, such as Elliptical and Archimedeans, were used. A Complaints Portfolio 
on the damage section of Afirme Seguros Company from Mexico City, Mexico, was 
analyzed. The empirical evidence found showed the existence of dependency between 
the number of claims and their amount, this finding contradicts what is stated in the 
Collective Risk Model Theory.
JEL Classification: G22, D81, C15.
Keywords: Collective Risk Model, Insurances, Copula, Dependent Claims.

1 La esperanza de pérdida para la compañía debe ser menor a lo que se cobra en 
primas (Klugman, 2012). 
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that the model presents, i.e., it is a question of confirming whether the model 
is appropriate considering how many times the losses or gains exceed the 
VaR (failure rate) in the period under consideration. The hypothesis of this 
paper assumes that the failure ratio is the same than the significance level of 
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5.  Empirical Analysis

5.2. Empirical Applications

Hitherto we have established the statistical characteristics of the price 
and return series and determined the GARCH (1,1) model appropriate to 
estimate the volatility of the logarithmic returns of spot and futures series 
of the MexDer and the CME. The econometric models for estimating the 
VaRG and ESG models are presented. Aiming at the greatest precision, in 
this section we report and compare the evidence obtained using confidence 
levels of 90%, 95%, 97%, and 99%. 

Table 5 shows the results of coverage performance for each metric used, 
each of the partitions, hedging strategies (short and long), and each of the 
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confidence levels considered. The performance of hedging strategies for 
each of the metrics involves the generation of many contrasting outcomes, 
which allows to stress some key differences. 

First, it is important to stress that both the hypotheses assumed are 
confirmed. In all situations the ES-GARCH model outperforms the VarGARCH 
model. Its estimates are more precise at all confidence levels, for both the 
Mexican Market and the CME, again, for both the short and long positions. 
Similarly, the Chicago market shows a better performance than the Mexican 
market in 28 out of 48 total hedging alternatives. Table 5 also shows that 
for all (short and long) positions (short and long) at 97.5% and 99.00% 
confidence levels the CME performance surpasses the Mexican performance 
applying the ES-GARCH model. At lower confidence levels the VaR-GARCH 
and ES-GARCH models interchange some results.

Another interesting outcome is the practically nil efficiency of both 
methodologies in both markets for confidence levels of 97.5% and below 
applying the VaR-GARCH method; very frequently hedging is in the 70.0% 
and even lower mark. This problem is almost inexistent applying the ES-

 

Table 5
"Metrics under GARCH approach: VaRG (VaR-Garch) y ESG (Expected Shortfall-Garch)

	 VaRG = 90%, 	 VaRG 95%, 	 VaRG 97.5% 	 VaRG 99%	 "VaRG90%	 VaRG95%	 VaRG 97.5%	 VaRG 99%

MexDer Dollar 
futures

	 EX ANTE	 71.19	 74.39	 84.59	 90.43	 86.66	 97.78	 91.57	 92.43
Short	 AMIDTS	 70.25	 76.73	 79.73	 86.82	 85.23	 95.48	 89.25	 91.82
	 EX POST	 68.49	 77.27	 90.03	 80.87	 78.34	 97.28	 90.27	 82.87

DEUA	 EX ANTE	 74.12	 77.33	 71.19	 78.43	 88.72	 88.43	 93.72	 94.43
Long	 AMIDTS	 69.84	 71.19	 74.91	 81.82	 85.28	 92.82	 91.23	 97.28
	 EX POST	 69.69	 80.91	 73.96	 77.87	 77.36	 92.87	 89.24	 95.87

CME Peso 
Futures

MXP	 EX ANTE	 79.53	 90.96	 75.91	 85.52	 91.27	 93.79	 93.41	 95.89
Short	 AMIDTS	 76.26	 75.91	 68.59	 80.37	 86.29	 91.26	 89.35	 93.26
	 EX POST	 71.87	 86.01	 75.76	 90.54	 87.19	 88.67	 96.73	 89.87

MXP	 EX ANTE	 69.91	 78.56	 72.09	 83.88	 80.19	 86.88	 96.47	 89.88
Long	 AMIDTS	 71.64	 75.76	 74.59	 80.29	 76.28	 95.95	 94.31	 95.29
	 EX POST	 68.89	 78.09	 70.28	 80.97	 84.21	 86.19	 86.71	 91.97

Source: Prepared by authors with data from Bloomberg and 
Banco de México. Applying the E-Views 9 package
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Introducción

El impacto de las reclamaciones en una compañía de seguros puede des-
equilibrar la estabilidad de la misma. Por esta razón, es fundamental una 

adecuada administración, evaluación y previsión de la siniestralidad dentro 
de un horizonte de tiempo finito; particularmente considerando las condi-
ciones económicas y sociales de los asegurados, para garantizar un correcto 
nivel de reservas y cálculo de primas (cumpliéndose el principio de ganancia 
neta dentro del seguro).1 

El modelo colectivo de riesgo, describe el agregado de reclamaciones 
como un fenómeno adverso para el patrimonio de una aseguradora, que pue-
de presentarse durante un período de tiempo [0,T]. Uno de los supuestos, 
que generalmente se considera por comodidad, es que existe independencia 

entre el número de reclamaciones y el monto de las mismas, lo que contrapone lo 
estipulado por la teoría del modelo colectivo de riesgo. 
Clasificación JEL: G22, D81, C15.
Palabras clave: modelo colectivo de riesgo, seguros, cópula, reclamaciones depen-
dientes.

AbstRAct

The collective risk model is defined in the actuarial literature as an important risk 
distribution analysis tool for insurance companies. Actuarial textbooks assume an 
independent behavior between the number of claims and their amount. The main 
objective of this paper is to show that under certain circumstances evidence of 
dependency between the variables studied may be found. To ascertain this objective 
copula functions, such as Elliptical and Archimedeans, were used. A Complaints Portfolio 
on the damage section of Afirme Seguros Company from Mexico City, Mexico, was 
analyzed. The empirical evidence found showed the existence of dependency between 
the number of claims and their amount, this finding contradicts what is stated in the 
Collective Risk Model Theory.
JEL Classification: G22, D81, C15.
Keywords: Collective Risk Model, Insurances, Copula, Dependent Claims.

1 La esperanza de pérdida para la compañía debe ser menor a lo que se cobra en 
primas (Klugman, 2012). 
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GARCH alternative; in fact, hedging effectiveness improves a lot at the 
97.75% confidence level and at the 99.0% confidence level the best results 
are obtained. 

Interestingly, for the short position in the MexDer, the more rigorous 
estimation is at a 95% level of confidence; but for the long position the best 
hedging strategy can be attained at a 99% level of confidence. In the case of 
the CME, for the short position the best metrics are at the 99%, but for the 
long position the best metrics are shared among the 95%, 97.5% and 99% 
levels of confidence. 

The greatest protection for the short position during the turbulence 
period is attained with ESG at 95% confidence level; 95.48 represents the 
percentage reduction of the expected shortfall in the covered position 
compared to the uncovered position; when the coefficient approaches one 
(100% in our analyses to ease the interpretation of the results), there is 
a total decrease in risk; on the contrary, if it tends to zero, it implies that 
there is no reduction of risk in the MexDer; this can be attributed to futures 
volatility in the CME in normal market situations, while in tense situations 
the MexDer futures seemingly have lower volatility.

Finally, looking at the differences in performance between metrics, the 
best sample performance metric in the MexDer (and the entire sample) is 
that of the 95% ESG confidence level resulting in a 97.78, while the worst 
coverage performance corresponds to the VaRG with 68.49 (both in the 
short position); this represents a performance differential of 31 percent. In 
the case of the CME, the best hedging is obtained during the ex post period 
(96.73) for the short position (ES at 97.5%), whereas the worst coverage is 
achieved during the same subperiod 68.89 per cent (VaRG at 90%). 

Summing up, exchange rate hedging in the Chicago Mercantile Exchange 
is more efficient applying ESG. The empirical evidence depends on the 
alphas (α) under consideration and the market to determine which of the 
two coverages should be used. Chicago is more convenient than hedging 
exchange rate in the Mexican Market. However, to ensure solid predictions 
ES-GARCH should be estimated at a 99.00% confidence level. Differences 
in the hedging strategies between the two markets are noteworthy. These 
differences can partially be attributed to market depth, traded volume, 
contract size, and market performance.9 It is important to recall that the 

9	 See also analysis of basic statistics, Table 3, page 12.
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CME offered 46 currency futures in 2017 (now 48), while in Mexico currency 
futures are offered only for the peso/dollar and the peso/euro.

Complementing Table 1, Table 6 shows important asymmetries between 
the MexDer and the CME futures. As far as volume is concerned, overall, the 
CME is larger than the MexDer (1.63 times). Similarly, regarding notional 
value the CME is even larger; 2.81 times the size of the Mexican Market. 
However, in a very positive note, open interest is much higher in Mexico. 
A hypothetical number of open interest contracts in Chicago, assuming 
an equal size of contracts ($10,000 in both countries) was considered and 
adjusted by the end of each subperiod exchange rate. Even so, the Mexican 
market remains larger than the CME in open interest. 

At any rate, the differences could be larger. While volume remains rather 
stable in the Mexican market, in the Chicago market there was a big drop 
after the first subperiod, particularly from the first to the second subperiod, 
the period of higher volatility. This can probably be attributed to investors’ 

 

Table 6

CME and MexDer  Liquidity and Open Interest

Chicago Mercantile Exchange  Peso/Dollar Futures

	 Period	 Volume	 Notional Value	 Open Interest	 Exchange Rate

	 Ex ante Oct-Dec 2016	  7,100,313 	  172,175,518,270 	 278,790	 0.0485 
				    (667,896)

	 Amidts Jan-Mar 2017	  310,000 	  8,246,654,784 	 298,003	 00.54.96 
				    (779,388)

	 Ex post April-June 2017	  1,759,000 	  48,691,771,949 	 328,640	 0.05536 
				    (831,460)

	 Sum	  9,169,313 	  229,113,945,003 	 905,433 
				    [2,278,744]

MexDer  
Dollar/Peso Futures

	 Period	 Volume	 Notional Value	 Open Interest	 Exchange Rate

	 Ex ante Oct-Dec 2016	 2,600,554	 25,538,937,760	 2,896,296	 20.6194

	 Amidts Jan-Mar 2017	 2,498,514	 26,997,745,531	 2,560,339	 18.7955

	 Ex post April-June 2017	 2,787,224	 29,029,681,662	 2,874,961	 18.0626

	 Sum	 7,886,292	 81,566,364,953	 8,331,596

	 CME/MexDer	 1.63X	 2.81X	 0.1087 
				    [27.35]

Source: Prepared by authors from Bloomberg and Baxmex data.
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Table 7
	 "Backtesting VarG 95% 

No rejection región for the number of observations (N) outside VaRG"

	 Number of failures	 Zone

Dollar Futures
Dollar US	Ex Ante		  2
Short	 Amidts		  1
	 Ex Post		  2

	 Dollar US	 Ex Ante	 3
	 Long	 Amidts	 3
		  Ex Post	 2

	 Peso Futures

	 MXP	 Ex Ante	 4
	 Short	 Amidts	 3
		  Ex Post	 2

	 MXP	 Ex Ante	 3
	 Long	 Amidts	 3
		  Ex Post	 2

Source: Prepared by authors from calculations made in excel with sample data

attitudes and institutional factors. As previously mentioned, the CME is a 
long large and well established market while the MexDer is a market still in 
the process of consolidation and growth. Feeling the upcoming of a period 
of turbulences derived from unfavorable economic conditions in Mexico, 
experienced hedgers in Chicago probably adjusted their holdings of dollar/ 
peso futures migrating to other currencies. Finally, migration probably took 
place to the dollar/peso options market created by the CME in 2017. The 
differences also show the presence of segmentation among these markets 
and the possible existence of arbitrage opportunities.

5.3  Backtesting 

This test was carried out for each partition from the sample series. The 
shaded areas in Tables 7 and 8 refers to the number of observations that are 
in the non-rejection area according to the statistical contrast made.

The number of failures of the estimates are well below the expected 
number of failures according to the parameters set out by the Kupiec test, 
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Table 8
"Backtesting Expected Shortfall (ESG) 95% 

No rejection región for the number of observations (N) outside VaRG"

	 Number of failures	 Zone
Dollar Futures
Dollar US	 Ex Ante	 4	
Short		  Amidts	 6
		  Ex Post	 7

Dollar US	 Ex Ante	 5
Long		  Amidts	 3
		  Ex Post	 7

Peso Futures

MXP		  Ex Ante	 4
Short		  Amidts	 3
		  Ex Post	 5

MXP		  Ex Ante	 5
Long		  Amidts	 7
		  Ex Post	 7

Source: Prepared by authors from calculations made in excel with sample data

 

Table 9
Rejection region for the number of observations (N) outside the VaR

	 "Significance level	 Days
	 (Gray Zone)"	 T≤255	 T≥510 	 T≥1000 

	 0.001	 1%	 N < 7	 1 < N < 11	 4 < N < 17

	 0.05	 5%	 6 < N < 21	 16 < N < 36	 37 < N < 65

	 0.1	 10%	 16 < N < 28	 38 < N < 65	 81 < N < 120

Source: Prepared by authors from Kupiec information

Table 9. Therefore, our empirical evidence is statistically robust. The mod-
els applied are strong, and the most appropriate metrics to hedge against 
exchange risk can be chosen for either ex ante, during, and ex post volatility 
periods. The evidence is also a guide to select either the MexDer or else the 
CME for short and long positions. Results favor the application of the Expect-
ed Short Fall – GARCH model at very strict confidence levels of 99.0 percent. 
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Conclusions

This article contrasts the effectiveness of hedging exchange rate risk using 
two metrics most often applied in finance for the case of the peso/dollar 
traded in Mexico, and the dollar/peso traded in Chicago. The metrics used 
are VaRG and ESG applying a heteroscedasticity autoregressive GARCH (1,1) 
model.

The VaRG as a performance measure provides lower results in terms of 
better hedging performance than the results obtained with the ESG metric. 
This suggests that the magnitude of coverage performance effectiveness is 
related to the result that is intended to be achieved, since the results are 
based on the choice of a performance metric. ESG, as a metric for assessing 
coverage performance is statistically adequate; results obtained at a 99.0% 
confidence level are very rigorous. A caveat to its application must be added: 
the results are based on a specific period; ESG should be employed, like any 
other model, with caution and the support of continuing research. 

Finally, this research underlines the importance of quantifying risk ex-
posure; it is very important for all risk-return decisions concerning trade, 
investments corporate activity, and policy making, as well as for the choice 
of hedging alternatives. Further research is needed, particularly for the case 
of emerging markets and currencies subject to sharp volatility patterns. In 
the case of the U.S. and Mexican derivative markets further research is nec-
essary to identify their differences and above all as a means to foster its 
integration with global markets as well as to the development and contribu-
tion to the advancement of the financial sector in Mexico and its potential to 
favor this nation’s economic development.
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