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Generacion de covarianzas con el modelo multifactorial CIR

RESUMEN

Se presenta el marco general para generar covarianzas entre instrumen-
tos con tasas de interés libre de riesgo r(t) e instrumentos con intensi-
dad de incumplimiento /1(t), en el modelo Cox, Ingersoll, Ross (CIR) o en
el modelo extendido CIR multifactorial.

Clasificacion JEL: C15, C58, C63

Palabras claves: Modelo CIR, modelo multifactorial -para tasa de inte-
rés, Teorema de Girsanov.

ABSTRACT

This paper presents a general framework of how to generate covariances
between riskless interest rate r\t) instruments, and financial instruments
with intensity of default ﬂ,(t), in Cox, Ingersoll, Ross (CIR), or in the exten-
ded multifactor CIR model.

JEL classification: C15, C58, C63

Keywords: CIR model, Multifactor model for interest rate, Girsanov
theorem
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Introduction

he problem of generating covariances between intensity of default and

riskless interest rates that are consistent with observed data has been
treated in several theoretical and practical settings, [Duffie, 2011]. For
definitions and resulting formulas refer to the second printing of [Bielecki &
Rutkowski, 2004]. In the quoted book the general construction of extended
Cox, Ingersoll, Ross (CIR) can be found [Szatzschneider, 2002]. In section 1
this method is briefly sketched. Although the use of covariances very often
leads to poor measurement of real dependencies, it is assumed that only
dependences observed are covariances. A free dependence structure between
r(t) and /1(1‘) is proposed to obtain explicit, or almost explicit results for
prices of riskless bonds, defaultable bonds and covariances.

Sections 1 and 2 present a general method for generating covariances for
predefined functions, particularly polynomial ones. Section 2 explains how to
deal with plausibly observed negative covariances. Sections 3 and 4 analyze
the problem for some classes of functions. It is made clear what can or cannot
be done in a CIR setting.

Several relevant quotations shall be considered:

1. r(s) and /l(s) have negative (observed) correlation -20% [Schonbucher,
2003].

2. CIR (CSR) correlated square root models are theoretically incapable of
generating negative correlations [Dai & Singleton, 2000].

3. The dynamics of rand A are rich enough to allow for a realistic description
of the real-world prices [Schonbucher, 2003].

The usual construction of the multifactor model for interest rate and intensity

of default is as follows:

r=mX,+m,X,+...+m X,

Volumen 4, numero 1, enero -junio 2014, pp. 87-98 89



Bstocistica

FINANZAS Y RIESGO

A=mX, +m,X,+...+m, X, , X, independent (positive) CIR models
and scalars m’s are nonnegative. This setting is called “usual construction”.

1. Model constraints

1. Itis not possible to obtain general covariance structure (even positive) if
X, CIR. Using comparisons theorems for diffusions, one can prove easily
that

0 < Covl(r(z), Alt))< 4t* + Bt + C.

2. The second constraint is the following.

t° cannot be uniformly approximated in [0,1] by Cov(r(t),/l(l‘)). Using
well known formulas such as:

Cov(r(t),/i(t)) = ZmimiVal’(X,- ) = Z 4, (e_kit —e )+ B, (1 —e )2'

ki,A,B >0,

An elementary but somewhat tricky proof follows:
1 _ _ I _ -
J. e kt(l—e k’)dt > e kt(l—e kl)

0 2

because:

—kt —kt
e : ( I-e 2 |
e k l—e resulting from:
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kit
e
TZI for t <1 and,

e

11_(;];)1 =tc"' >t for some c € (e_k,l)
—e

and

1

([l-eFar) = [l-e k> -et).

therefore

then, for f(t)any linear combination
Yr@ar= L
Iof(f) ’—4f()
and for g(t) =¢>, we have
Jig()dr =)
0 5

3. The third constraint is clear: Negative covariances cannot be generated
from the usual construction , [Dai & Singleton, 2000 provide further
discussion].

The easiest way to obtain negative correlations seems to be,

X, ~ driven by W,

Y. ~ driven by —W..
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But there is no possibility to get explicit results, the only possible ap-
proach is process simulation.

2. Particular method and extended CIR

“Explicit” formulas are desirable for:

B(0,/)=E (e 3r(s)ds] (1)
B(0,)=E [e_ é(’"(sm(s))d‘g] (2)
Cov(r(t), i(t)) (3)

To be able to reproduce a given arbitrary covariance structure, an exten-
ded CIR Model (ECIR) with time dependent parameters has to be used.

First a short, user friendly construction of extended CIR with references
quoted in the introduction is presented.

1 Start from BESQ5.
dX(t)=2./X () dw(t)+ S dr X(0)>0. (4)

2. Add the drift 28, -r(t) (Girsanov).

3. Multiply the process by o,

Now,

dr(t)=2.Jc, -r(t) dw(t)+ {2@ + :((:ﬂ r(t)+o o, }dt
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1
50.)=p*(ewp| ([ 8.5 )543 4, +0/0)]
x o r_o
Oy
and

) _hs)= g2+ + 20, in [0

¢'(¢)

=4, (0(0) =1 (Sturm-Liouville equation),
olr)

or equivalently in terms of Riccati equation

F2(s)+ Fls)= h(s), F(0)= g, Fs)= 2.
o(s)

Therefore, explicit formulas for bonds prices depend on the solutions of
these equations.

3. Generating positive covariances for polynomials

Note that the free term of polynomials should be zero.

For grade 3 polynomials set F(t)=0, fix time t, and
r(s)=X,(s)-&, X,~BESQ"’,
A(s)=0,(s) X,(s),
A(s)+1(s)=(0(s)+ &)X, (s).
For a moment only one factor will be considered.
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Choose F(s)= D(s—1), for s<t, D being constant.
F'(s)+F*(s)=D+D*(s—t)
o(s):=D+ D?s*> —2dst +1*D* — ¢
and assume that o(s)> 0.
If X(s)~BESQ’

Var(X (s)) = 4sX(0)+ 26>

and
Cov(X(s), A(s))= - o(s) Var(X(s))

Elementary calculations show that one can generate any positive cova-
riances as polynomial of grade 3 from BESQ0 using two factors.

For grade 4 polynomials the same procedure applies but starting with
BESQ?’ instead of BESQ’, & > 0.

For grade 5 polynomials F(S) = D(S - t)2 ,and so on.

This method leads to a general construction for any positive covariance
structure, and equations (1), (2), (3) can be obtained.

4. Negative correlation

Take factors as BESQ', more explicitly:
r(e)=((e)+4)
At)=(w()-B), 4,B>0.

Both being BESQ' process driven respectively by:
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Now Cov(A(t),r(¢))=2¢(t — AB), is negative for # < AB.
2
(W(t)+ A)2 + (W(z‘)— B)2 = constant+ 2BESQ" starting at (A _ZB) =X,S0

any quadratic polynomial with explicit formulas (1),(2),(3) can be generated.

Grade 3 polynomials with some restrictions can be generated as a combi-
nation of the results of this section and the previous one.

Grade 6 polynomials can be obtained for example multiplying by G(S),
G(S) as before (but without €)

o(s)=D+D*s* —2Dst +1*D’

obtained from F(S) = D(S — l‘).

5. Other explicit constructions

Set f(s)= g A<0r+4>0
p(s)+ B(s)=0
r(s) = X(S)- g, X(s) CIR with drift ,B(S),O' =1,
As)=X(s)-o(s).
For B(O,t)
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Cov (ﬂ(t),r(t)) = O'(S)- & Var(X(t)), o still undefined.
Set V,~BESQ’, V, = x

1

1
E(X2 (t)) = E(Vt2 e J -constant= f£(t)- J.:xzezﬁlel,(t)(x)dx.

The density f, ;) is well known.

B(0,¢)= £ expl - jg(a(s)+g)x(s)ds)j

Il
by

1
| 14,4, - [ X(5Xols)+ g)dsD
Set
F(S) =p + D(S — t),
and explicit results can be

o(s)=F*(s)+ F'(s)— & assuming o(s)>0.

6. More general construction

v, (S) = ;O'(S)Y(S) =4 (s) for some factor

20(s)=c? - p*(s)- B'(s) > 0, for some choice of SB(s)
B(0,1) is explicite (CIR).

However in this case B(O,t) not explicit.

96 Volumen 4, numero 1, enero -junio, 2014



Bstocastica

Generating covariances in multifactor CIR model
FINANZAS Y RIESGO

Calculation of covariances:
The problem is easier if based initially on BESQ".

dY(t)=2\YS dw(s)+28(s)Y(s)ds, B(s)<0

Y(O) =1 for example

E(Y(1)) = exp[z [ ,B(s)ds)

E(Y2 (t)) = H(t), where

pls)d .
0 and can be solved explicitly.

HY(1) = 4H(t)+ p0)e’™

Other general modeling possibility uses Laplace transform for the pro-
cess Y(t) for general ,B(S) In this case,

PP )= 576 716, 5620

But now F(f)= (t)+ A for some A () and general solution of this

equation can be obtained solving:

w(s)= go(s)[1 +4 :(DZI(U)du]

One can find A to satisfy * and get explicit formula for E (e H(’)) with
= o =1 but not for the price of the bond. This model is clearly quite

o(t)=
difficult to put into practice. A rather complicated density of CIR is presented
in [Jeanblanc et al, 2009] (p.358).
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Conclusions

As

has been shown, there are many methods to generate given (observed)

covariance structure between instantaneous riskless interest rates, and
intensity of default. However, to obtain user friendly results in the case of
negative correlations, one should not expect substantial extensions of
presented use of “degenerated” CIR’s- squares of Brownian motions.

As a final comment, the CIR model is very attractive and interesting, being

the “Girsanov version “of square of Brownian Motion, but it has generated in
the past many erroneous formulas. See for example the excellent textbook by
[Jeanblancetal,2009] p. 127, where an erroneous application of Ito’s formula
appears, this mistake is explained extensively in [Szatzschneider 2008].

98

References

Darrell Duffie (2011). Measuring Corporate Default Risk. Oxford University Press.

Jeanblanc Monique, Yor Marc, Chesney (2009). Mathematical Methods for
Financial Markets. Springer-Verlag.

Dai Q. and Singleton K (2000). “Specification Analysis of Affine Term Structure
Models”. Journal of Finance 55, 1943-1978.

Bielecki T. and Rutkowski M. (2004). “Credit Risk: Modeling, Valuation and
Hedging”. Springer.

Schonbucher P. (2003). “Credit Derivatives Pricing Models: Models, Pricing and
Implementation”. Wiley, p. 175.

Szatzschneider W. (2002). “The Cox, Ingersoll and Ross Extended Model”. Revista
Mexicana de Economia y Finanzas 1, 319-332.

(2008). “Exponential Martingales and CIR Model”. Advances in
Mathematics y of Finance, Banach Center Publications Vol. 83 pp. 243-249.

Volumen 4, numero 1, enero -junio, 2014



